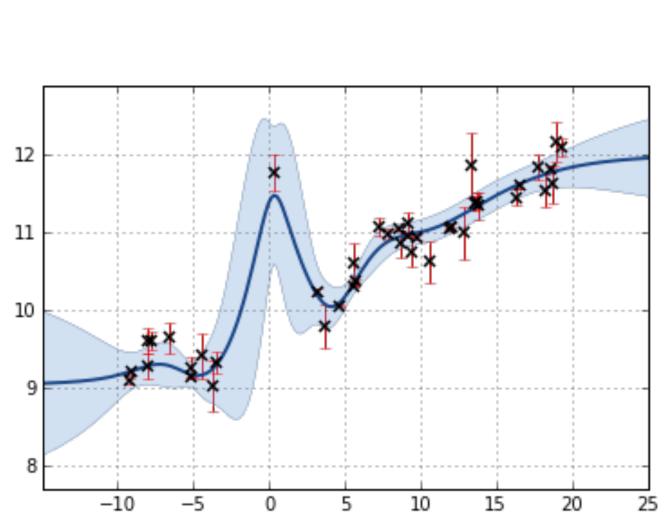
Aword is worth a thousand vectors (word2vec, lda, and introducing lda2vec)

Christopher Moody a Stitch Fix



## About







## @chrisemoody

Caltech Physics

PhD. in astrostats supercomputing

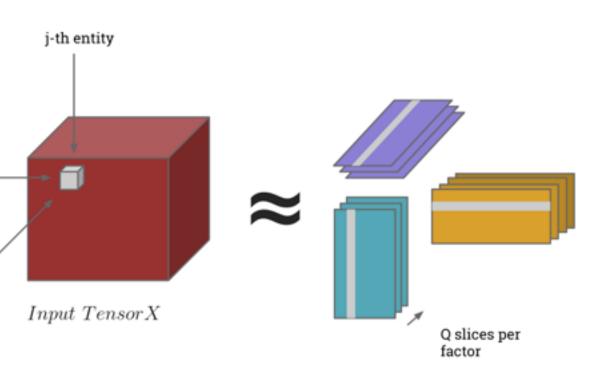
sklearn t-SNE contributor

Mata Labs at Stitch Fix github.com/cemoody

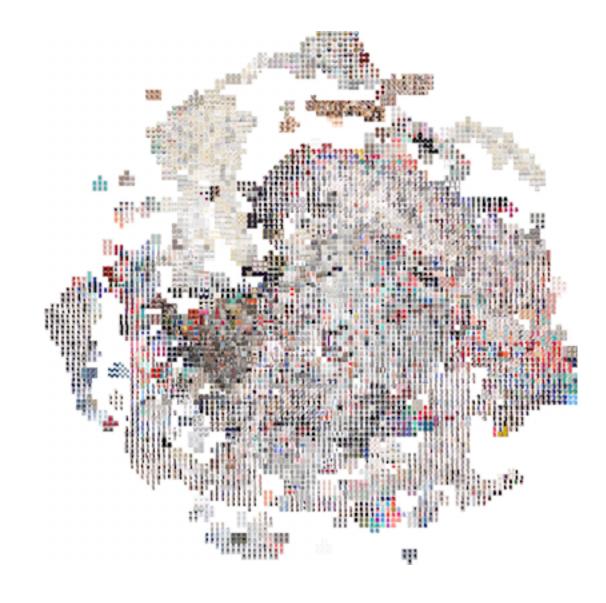
th entity

## Gaussian Processes

## Tensor Decomposition



## t-SNE



## chainer deep learning





## Credit

- Large swathes of this talk are from previous presentations by:
- Tomas Mikolov
- David Blei
- <u>Christopher Olah</u>
- Radim Rehurek
- Omer Levy & Yoav Goldberg
- <u>Richard Socher</u>
- Xin Rong
- <u>Tim Hopper</u>







## word2vec



## word2vec

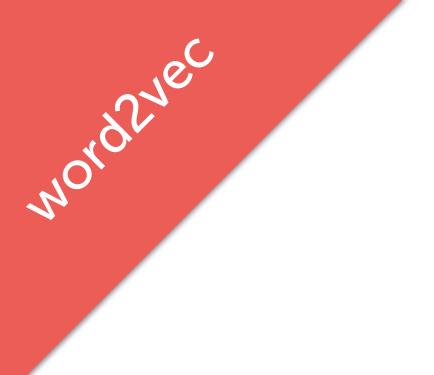
- 3. Learns from raw text
- 4. Pretty simple algorithm
- 5. Comes pretrained

1. king - man + woman = queen2. Huge splash in NLP world

## word2vec

- 1.
- 2.
- 3.

Set up an objective function Randomly initialize vectors Do gradient descent



word2vec: learn word vector  $v_{in}$ from it's surrounding context

 $v_{in}$ 

wordzyec

## '. The fox jumped **over** the lazy dog

## Maximize the likelihood of seeing the words given the word **over**.

P(the|over) P(fox|over) P(jumped|over) P(the|over) P(lazy|over)P(dog|over)

...instead of maximizing the likelihood of co-occurrence counts.



## What should this be?

P(fox|over)



## Should depend on the word vectors.

P(fox|over) $P(v_{fox}|v_{over})$ 

Also a *context* window around every input word.

" 66 • The fox jumped **over** the lazy dog

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

The fox jumped **over** the lazy dog "  $v_{IN}$ 

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

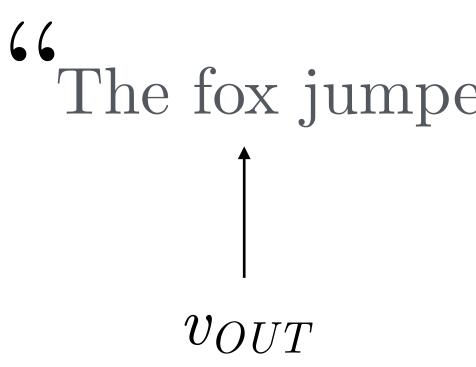
# wordzyec

Also a *context* window around every input word.

77 66 The fox jumped **over** the lazy dog  $v_{OUT}$  $v_{IN}$ 

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.



Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$ 

77 The fox jumped **over** the lazy dog  $v_{IN}$ 

Also a *context* window around every input word.

" 66 The fox jumped **over** the lazy dog  $v_{OUT}$  $v_{IN}$ 

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

(f The fox jumped **over** the lazy dog  $v_{IN}$   $v_{OUT}$ 

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

The fox jumped **over** the lazy dog "  $v_{OUT}$  $v_{IN}$ 

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

" 66 The fox jumped **over** the lazy dog  $v_{OUT}$  $v_{IN}$ 

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

Also a *context* window around every input word.

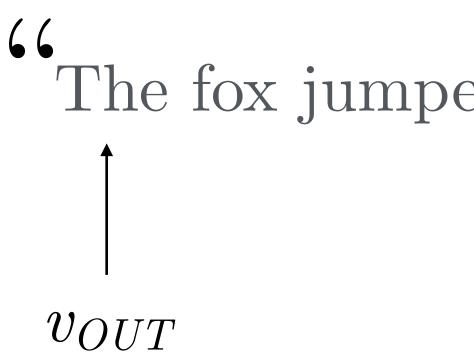


Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$ 

" The fox jumped over **the** lazy dog  $v_{IN}$ 

Also a *context* window around every input word.

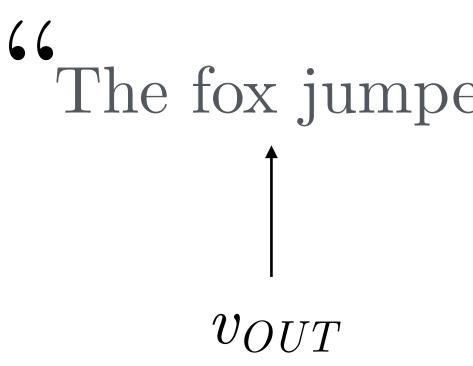


Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$ 

" The fox jumped over **the** lazy dog  $v_{IN}$ 

Also a *context* window around every input word.



Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$ 

" The fox jumped over the lazy dog  $v_{IN}$ 

Also a *context* window around every input word.

77 66 The fox jumped over **the** lazy dog  $v_{OUT}$  $v_{IN}$ 

Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

## Nordzyec

Also a *context* window around every input word.



Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$ 

The fox jumped over **the** lazy dog "  $v_{OUT}$   $v_{IN}$ 

Also a *context* window around every input word.



Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$ 

The fox jumped over **the** lazy dog "  $v_{IN} v_{OUT}$ 

Also a *context* window around every input word.



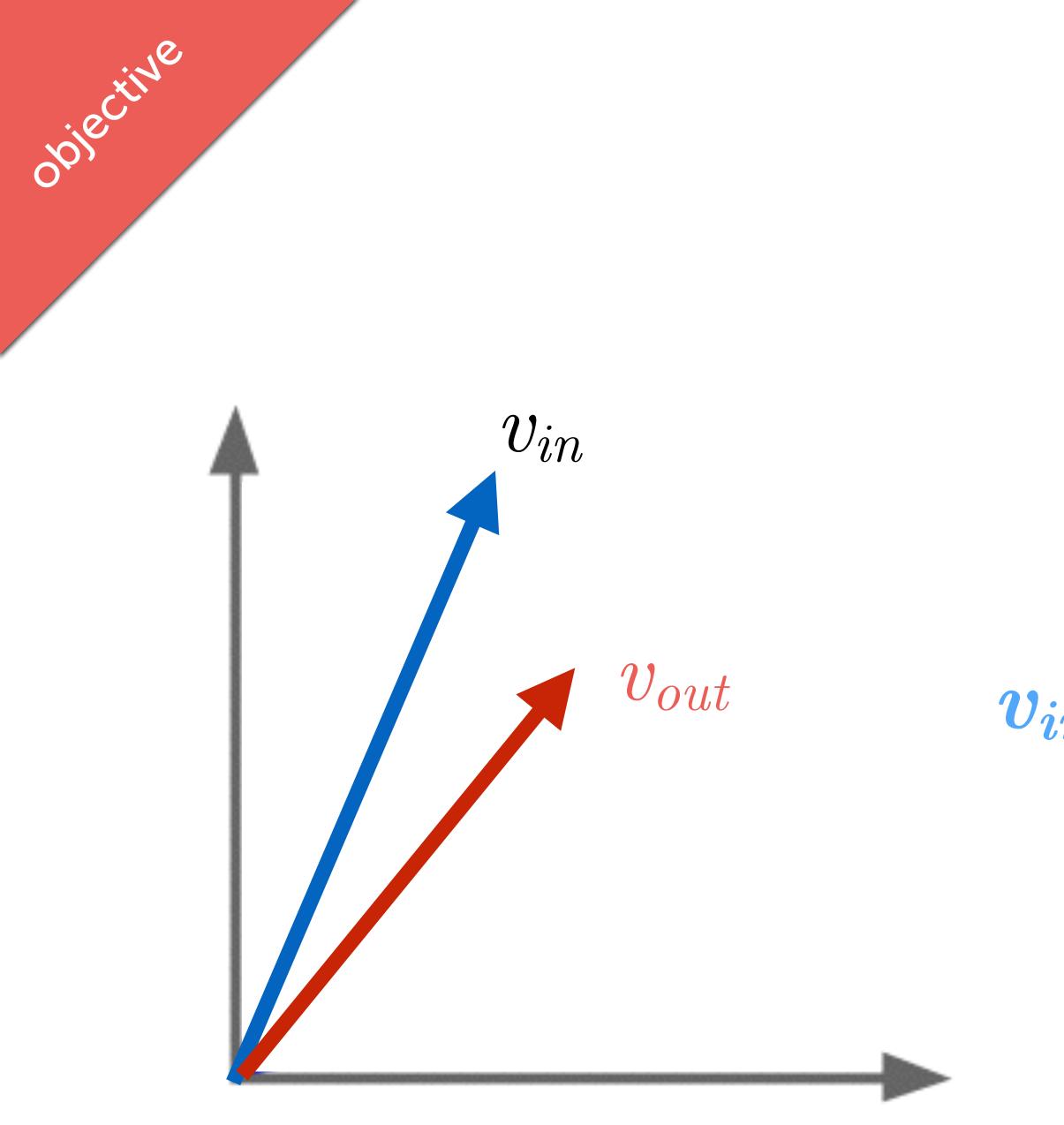
Twist: we have *two* vectors for every word. Should depend on whether it's the input or the output.

 $P(v_{OUT}|v_{IN})$ 

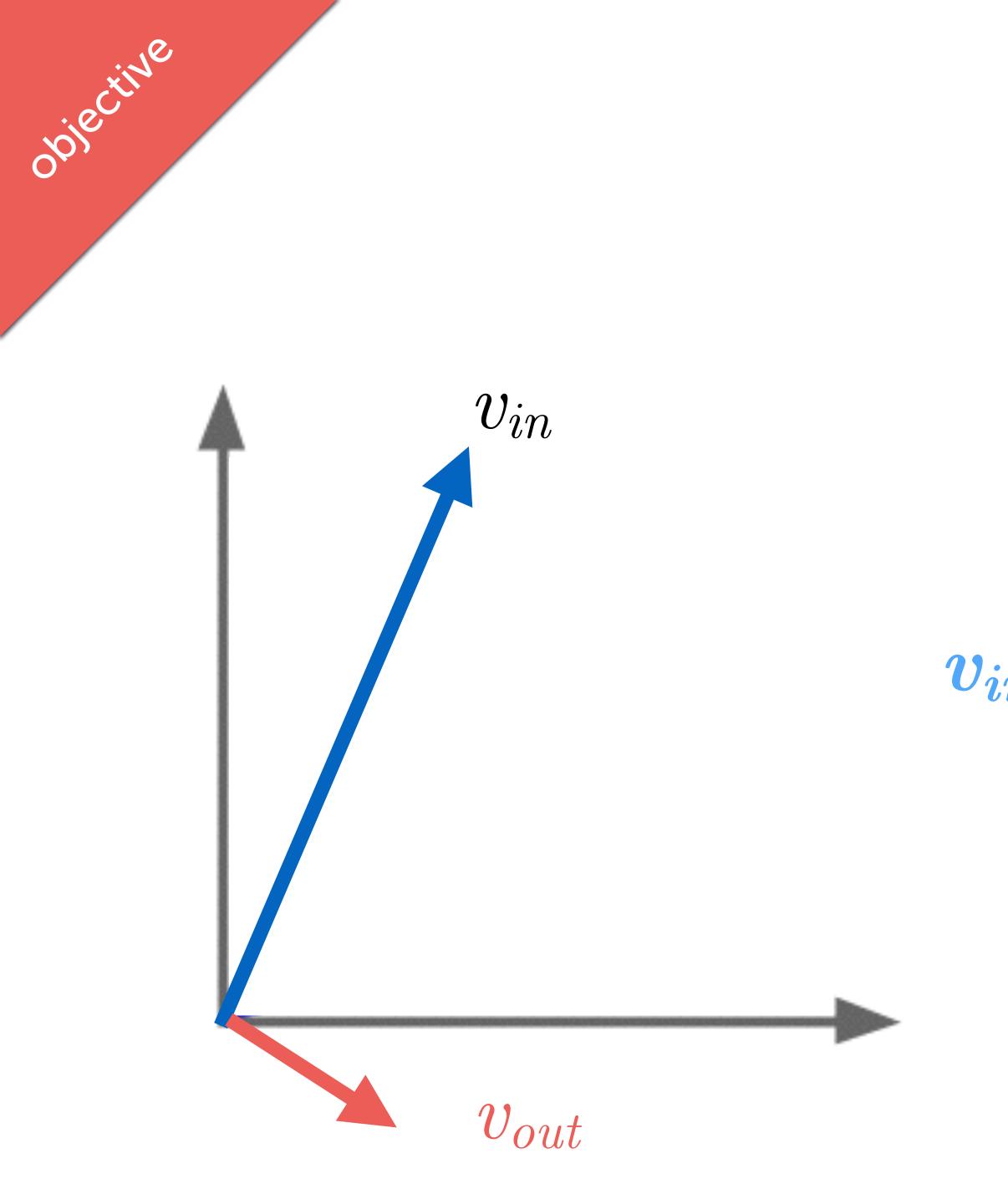
" The fox jumped over the lazy dog  $v_{OUT}$  $v_{IN}$ 



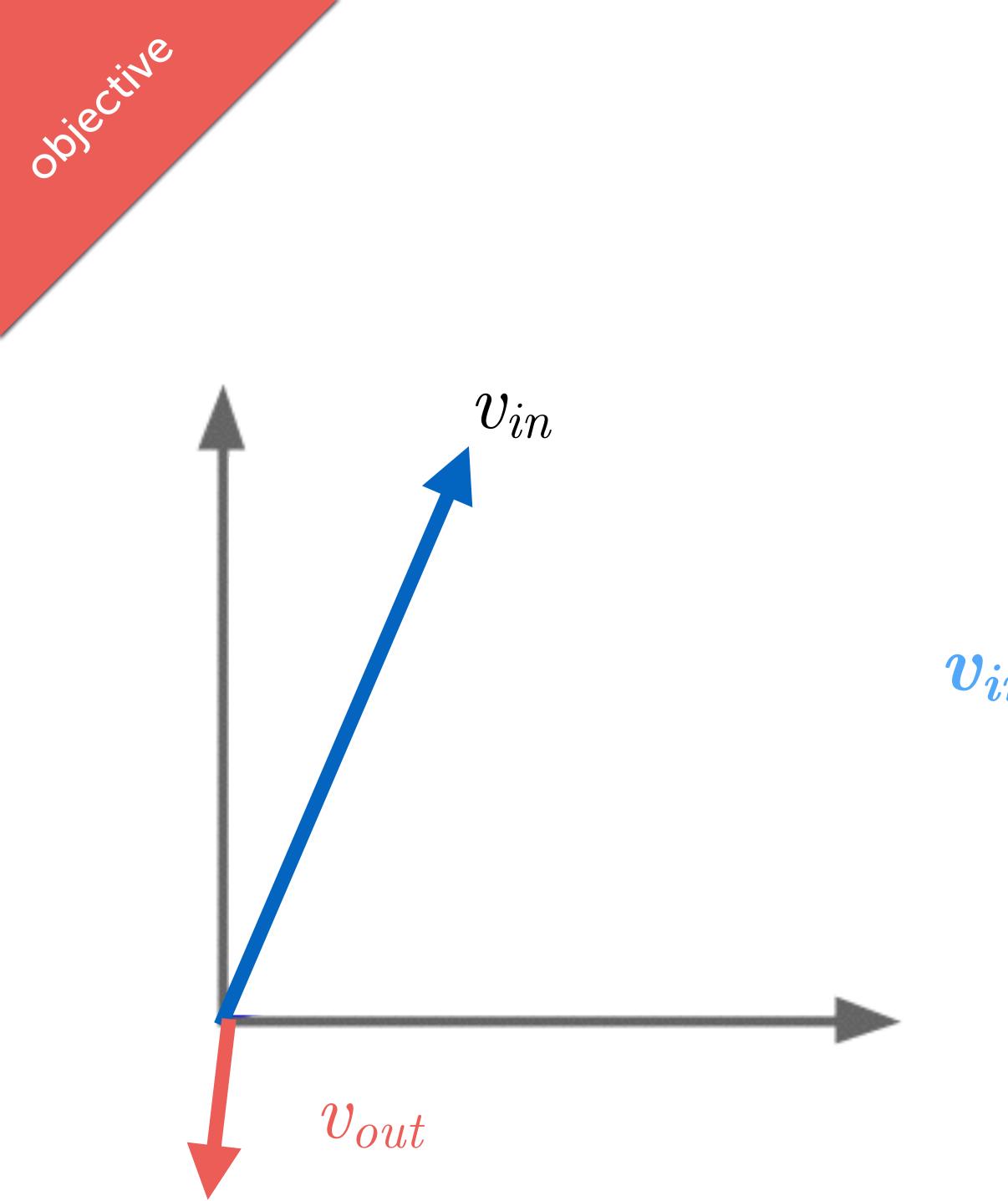
- How should we define  $P(v_{OUT}|v_{IN})$ ?
  - Measure loss between  $v_{IN}$  and  $v_{OUT}$ ?
    - $v_{in}$   $v_{out}$



## $v_{in}$ • $v_{out} \sim 1$



## $v_{in}$ • $v_{out} \sim 0$



## $v_{in}$ • $v_{out}$ ~ -1



## $v_{in}$ • $v_{out} \in [-1,1]$



## $v_{in} \bullet v_{out} \in [-1,1]$



## $softmax(v_{in} \bullet v_{out}) \in [0,1]$



 $softmax(v_{in} \bullet v_{out})$ 

Probability of choosing 1 of N discrete items. Mapping from vector space to a multinomial over words.



softmax ~  $exp(v_{in} \cdot v_{out}) \in [0,1]$ 



 $exp(v_{in} \bullet v_{out})$   $\sum_{k \in V} (v_{in} \bullet v_k)$ softmax =

Normalization term over all words



 $exp(v_{in} \cdot v_{out})$   $\sum_{k=1}^{N} \sum_{k=1}^{N} \sum_{k$  $= P(v_{out}|v_{in})$ softmax = $k \in V$ 



### Learn by gradient descent on the softmax prob.

$$v_{in} := v_{in}$$
 -

$$v_{out} := v_{out}$$

For every example we see update  $v_{in}$ 

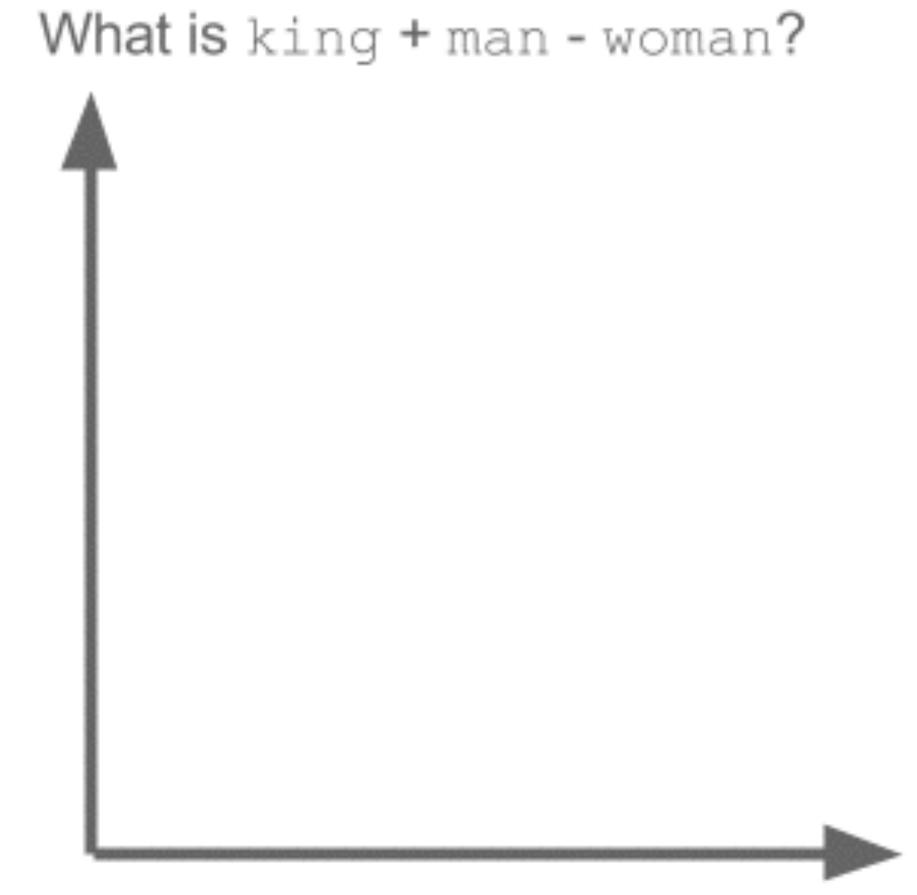
 $+ \frac{\partial}{\partial v_{in}} P(v_{out}|v_{in})$ +  $\frac{\partial}{\partial v_{out}} P(v_{out}|v_{in})$ 

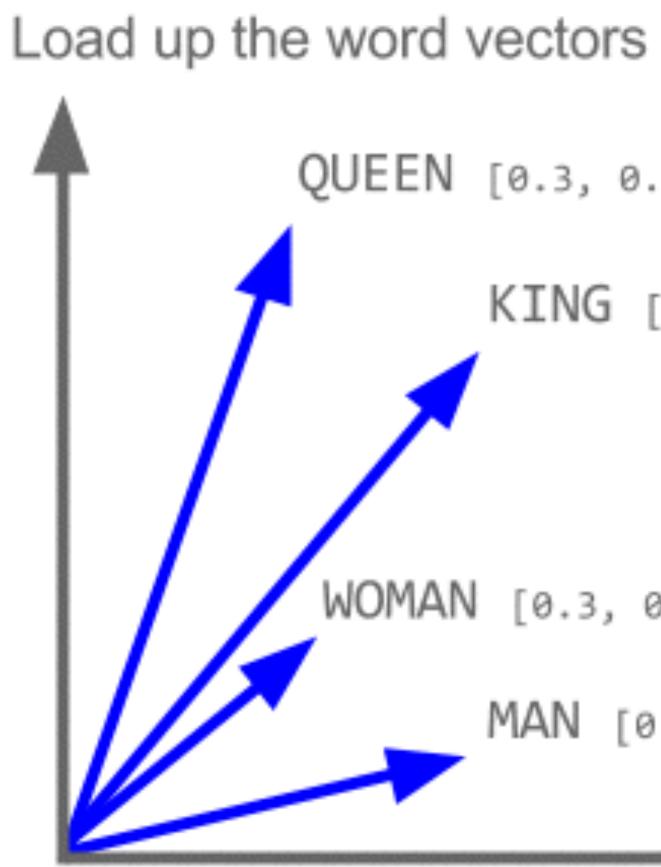
| Model           | Redmond            | Havel                  | ninjutsu      |
|-----------------|--------------------|------------------------|---------------|
| (training time) |                    |                        |               |
| Collobert (50d) | conyers            | plauen                 | reiki         |
| (2 months)      | lubbock            | dzerzhinsky            | kohona        |
|                 | keene              | osterreich             | karate        |
| Turian (200d)   | McCarthy           | Jewell                 | -             |
| (few weeks)     | Alston             | Arzu                   | -             |
|                 | Cousins            | Ovitz                  | -             |
| Mnih (100d)     | Podhurst           | Pontiff                | -             |
| (7 days)        | Harlang            | Pinochet               | -             |
|                 | Agarwal            | Rodionov               | -             |
| Skip-Phrase     | Redmond Wash.      | Vaclav Havel           | ninja         |
| (1000d, 1 day)  | Redmond Washington | president Vaclav Havel | martial arts  |
|                 | Microsoft          | Velvet Revolution      | swordsmanship |



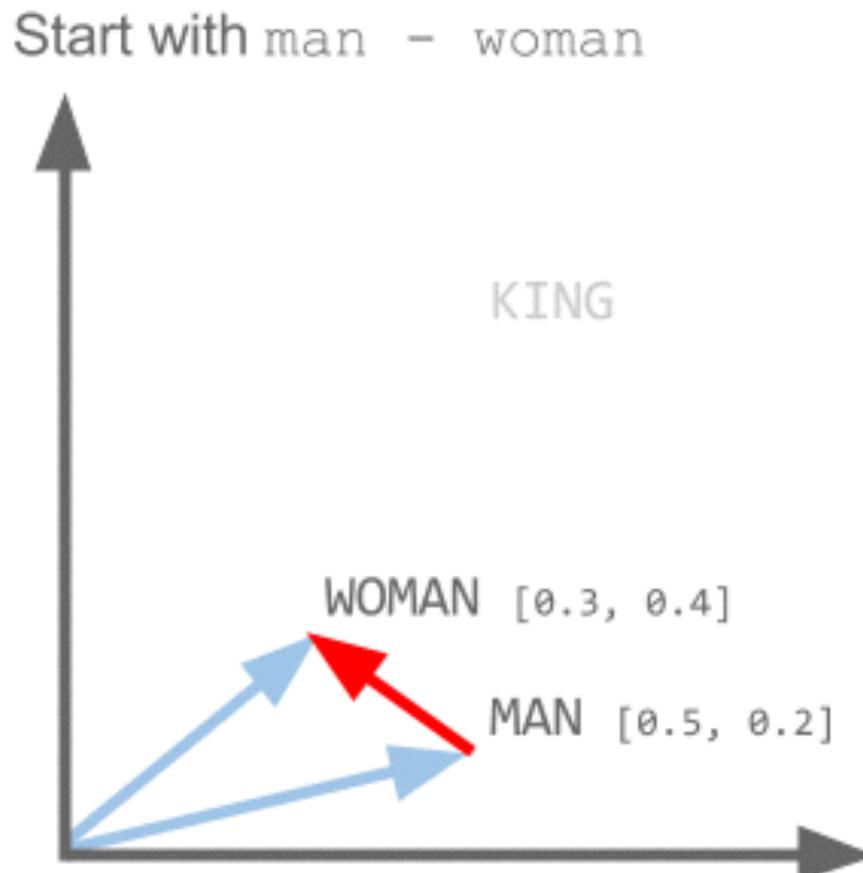
| Model                 | Vector         | Training | Ac       | curacy [%] |       |
|-----------------------|----------------|----------|----------|------------|-------|
|                       | Dimensionality | words    |          |            |       |
|                       |                |          | Semantic | Syntactic  | Total |
| Collobert-Weston NNLM | 50             | 660M     | 9.3      | 12.3       | 11.0  |
| Turian NNLM           | 50             | 37M      | 1.4      | 2.6        | 2.1   |
| Turian NNLM           | 200            | 37M      | 1.4      | 2.2        | 1.8   |
| Mnih NNLM             | 50             | 37M      | 1.8      | 9.1        | 5.8   |
| Mnih NNLM             | 100            | 37M      | 3.3      | 13.2       | 8.8   |
| Mikolov RNNLM         | 80             | 320M     | 4.9      | 18.4       | 12.7  |
| Mikolov RNNLM         | 640            | 320M     | 8.6      | 36.5       | 24.6  |
| Huang NNLM            | 50             | 990M     | 13.3     | 11.6       | 12.3  |
| CBOW                  | 300            | 783M     | 15.5     | 53.1       | 36.1  |
| Skip-gram             | 300            | 783M     | 50.0     | 55.9       | 53.3  |



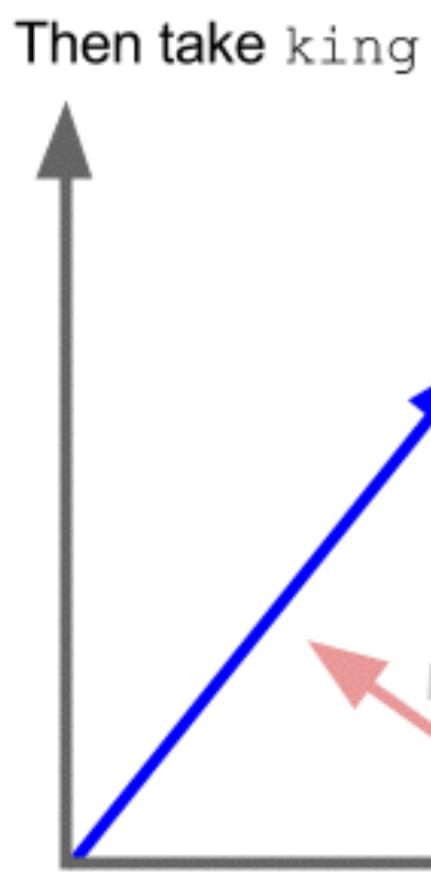




```
QUEEN [0.3, 0.9]
       KING [0.5, 0.7]
 WOMAN [0.3, 0.4]
       MAN [0.5, 0.2]
```



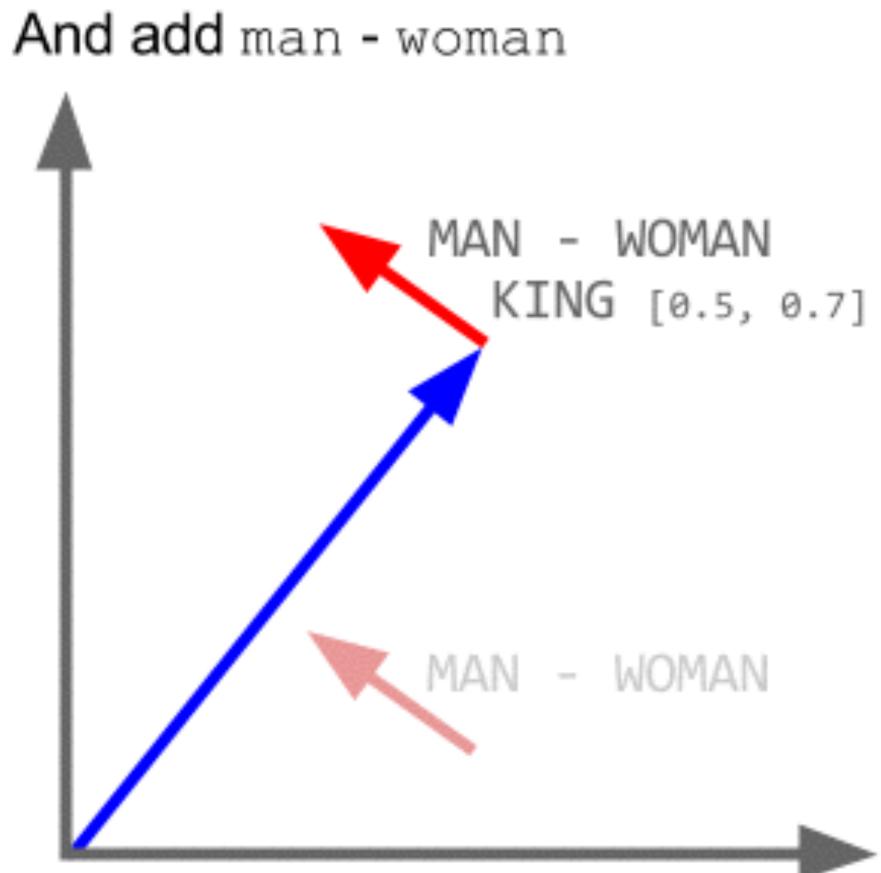


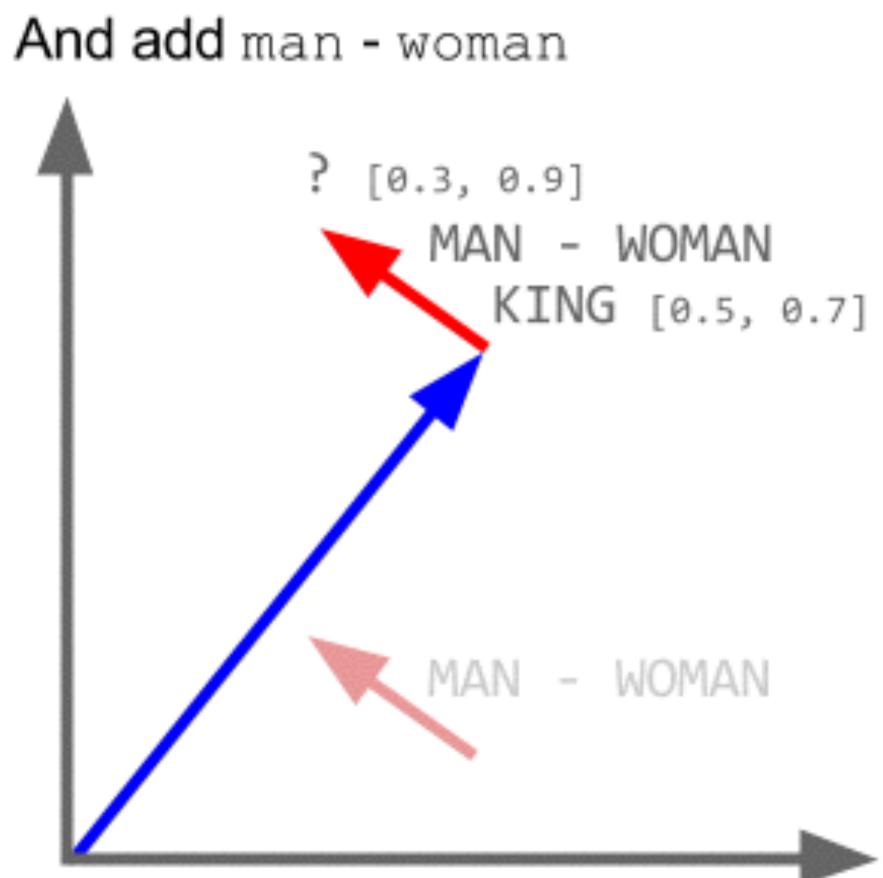




### KING [0.5, 0.7]

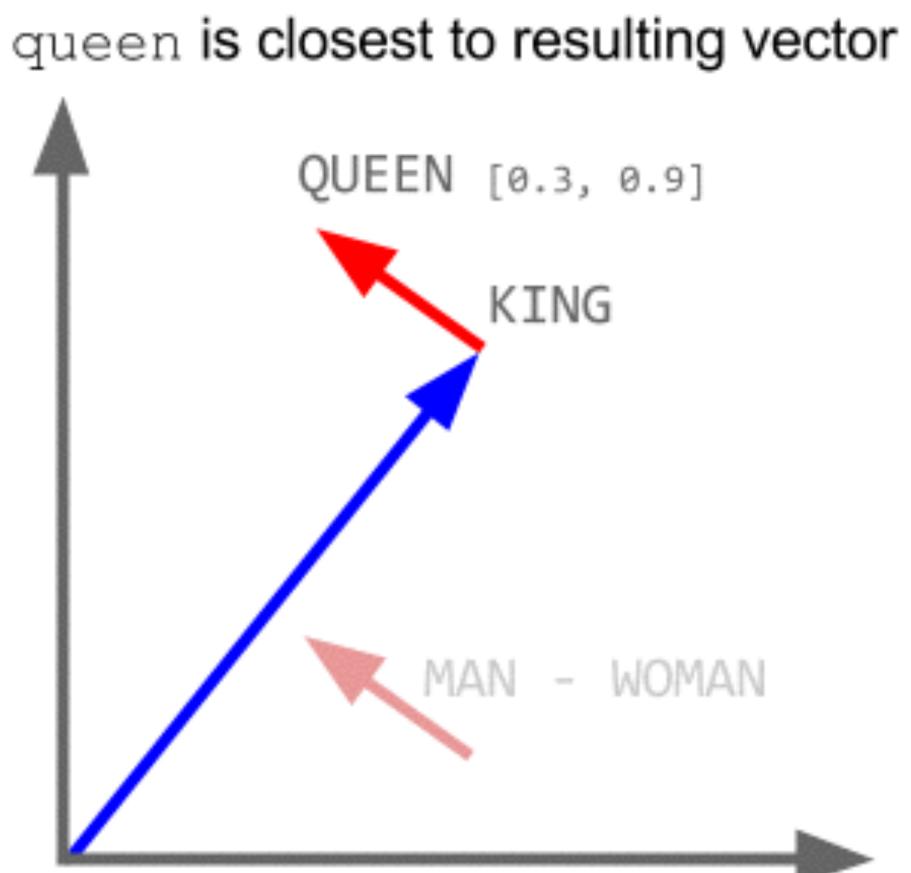
MAN - WOMAN

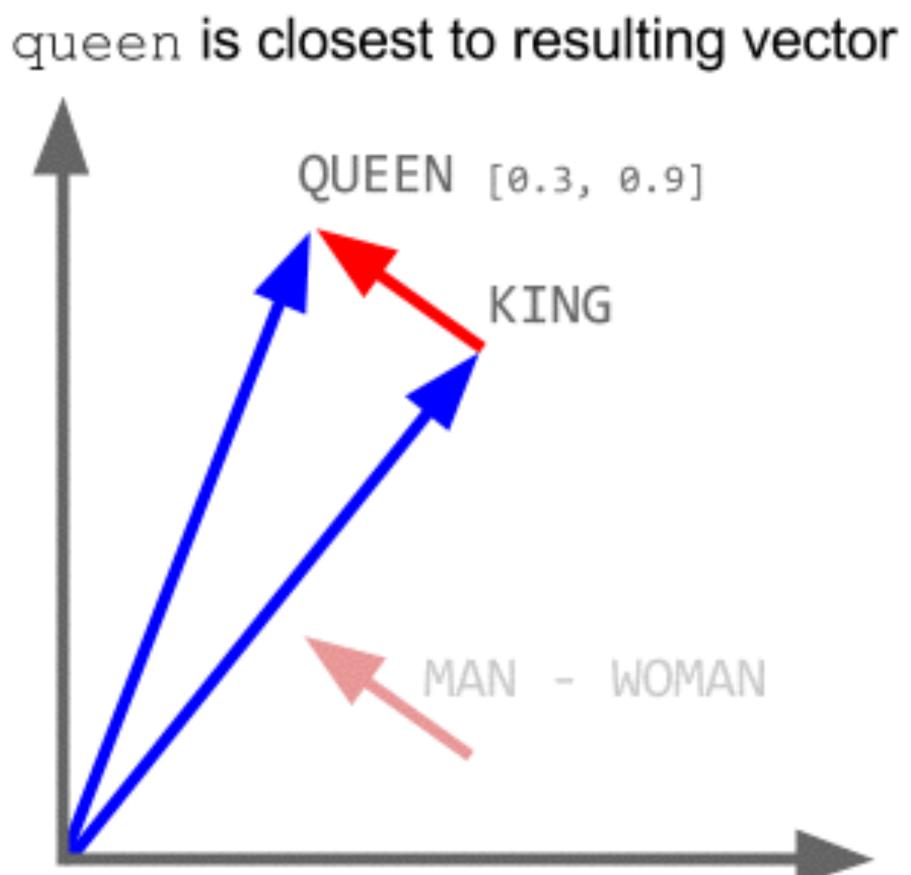


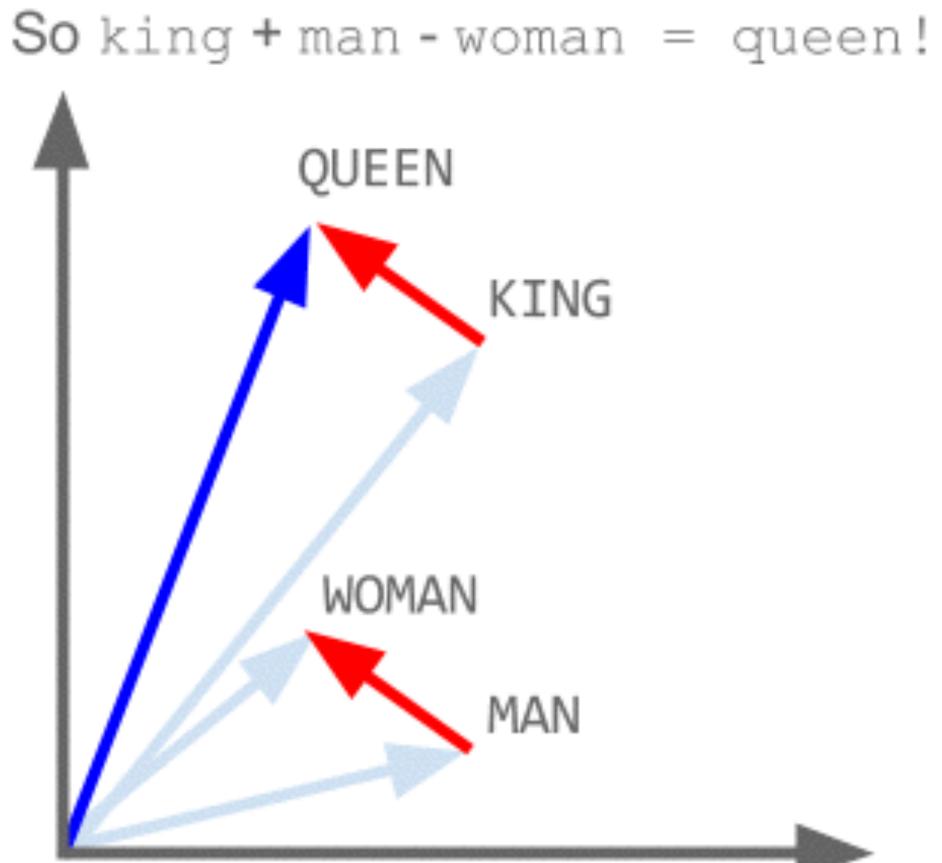


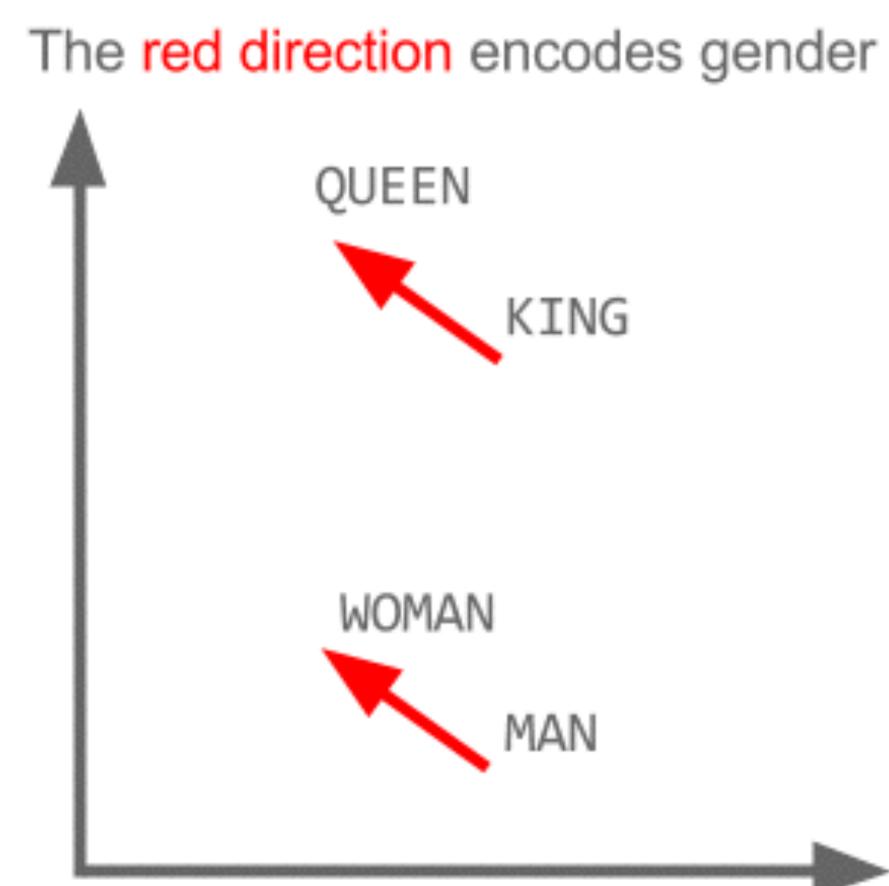


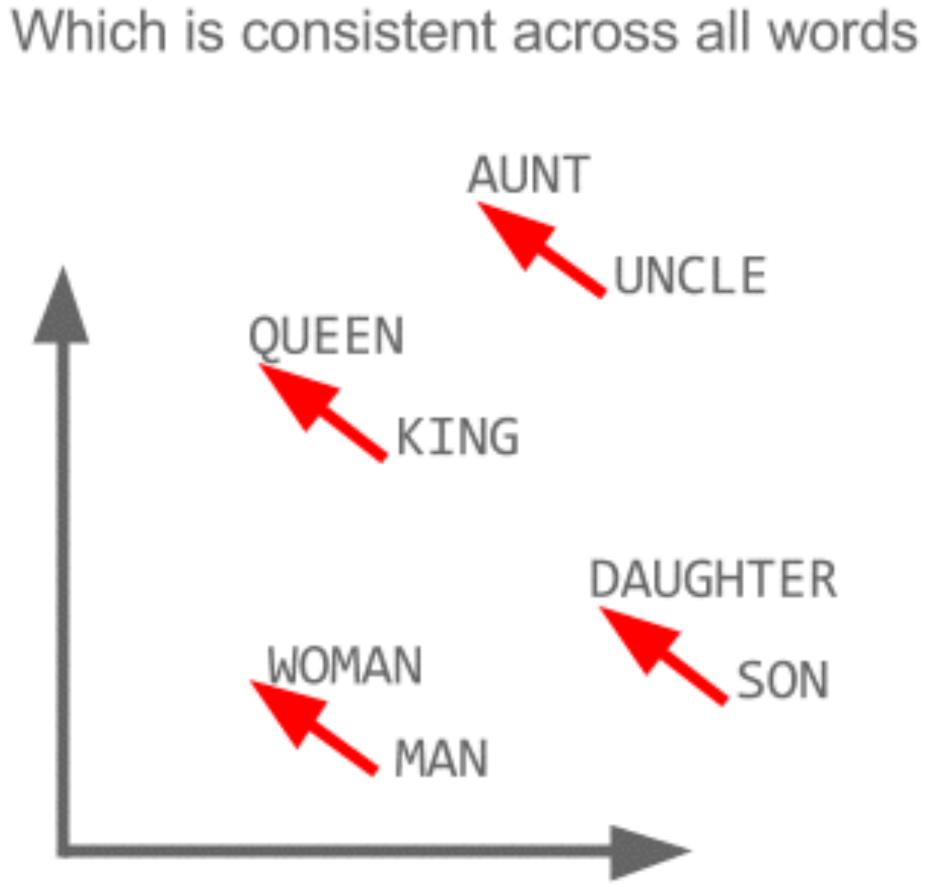


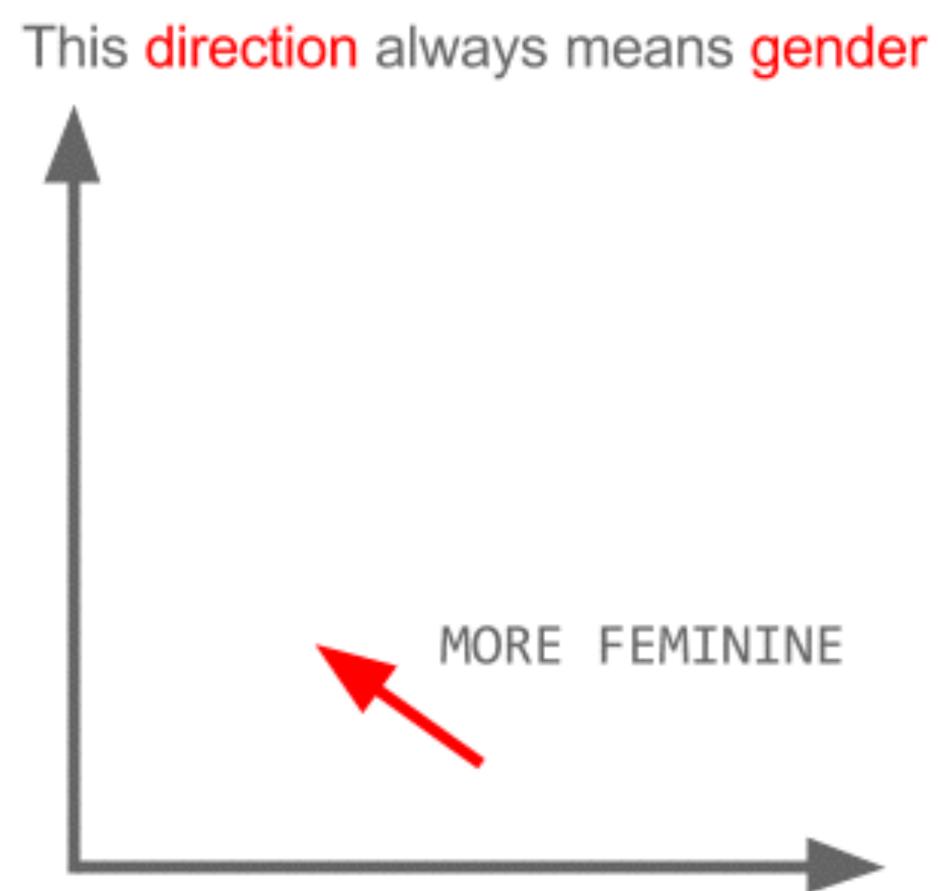


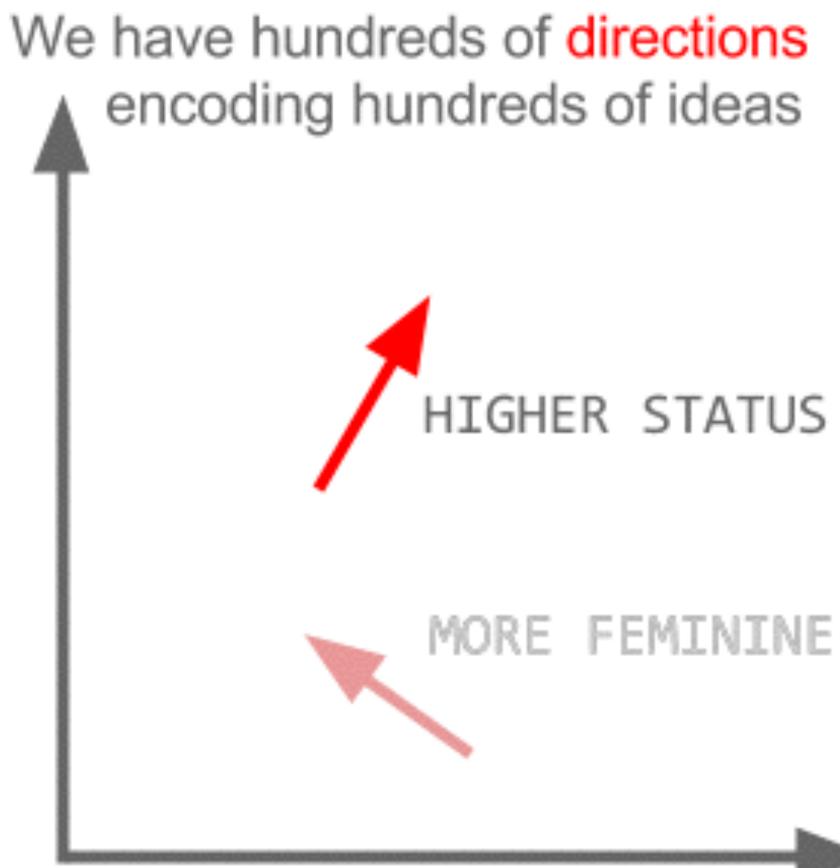












| korunaHanoiairline LufthansaMoscowJuliette BinocheCheck crownHo Chi Minh Citycarrier LufthansaVolga RiverVanessa ParadisPolish zoltyViet Namflag carrier LufthansaupriverCharlotte GainsbourgCTKVietnameseLufthansaRussiaCecile De | C | zech + currency | Vietnam + capital | German + airlines      | Russian + river | French + actress     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------|-------------------|------------------------|-----------------|----------------------|
| Check crownHo Chi Minh Citycarrier LufthansaVolga RiverVanessa ParadisPolish zoltyViet Namflag carrier LufthansaupriverCharlotte Gainsbourg                                                                                        |   | 1               | 1                 |                        |                 |                      |
| Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg                                                                                                                                                          |   | koruna          |                   |                        |                 |                      |
|                                                                                                                                                                                                                                    |   | Check crown     | Ho Chi Minh City  | carrier Lufthansa      | Volga River     | Vanessa Paradis      |
| CTK Vietnamese Lufthansa Russia Cecile De                                                                                                                                                                                          |   | Polish zolty    | Viet Nam          | flag carrier Lufthansa | upriver         | Charlotte Gainsbourg |
|                                                                                                                                                                                                                                    |   | CTK             | Vietnamese        | Lufthansa              | Russia          | Cecile De            |

# $ITEM_3469 + 'Pregnant'$



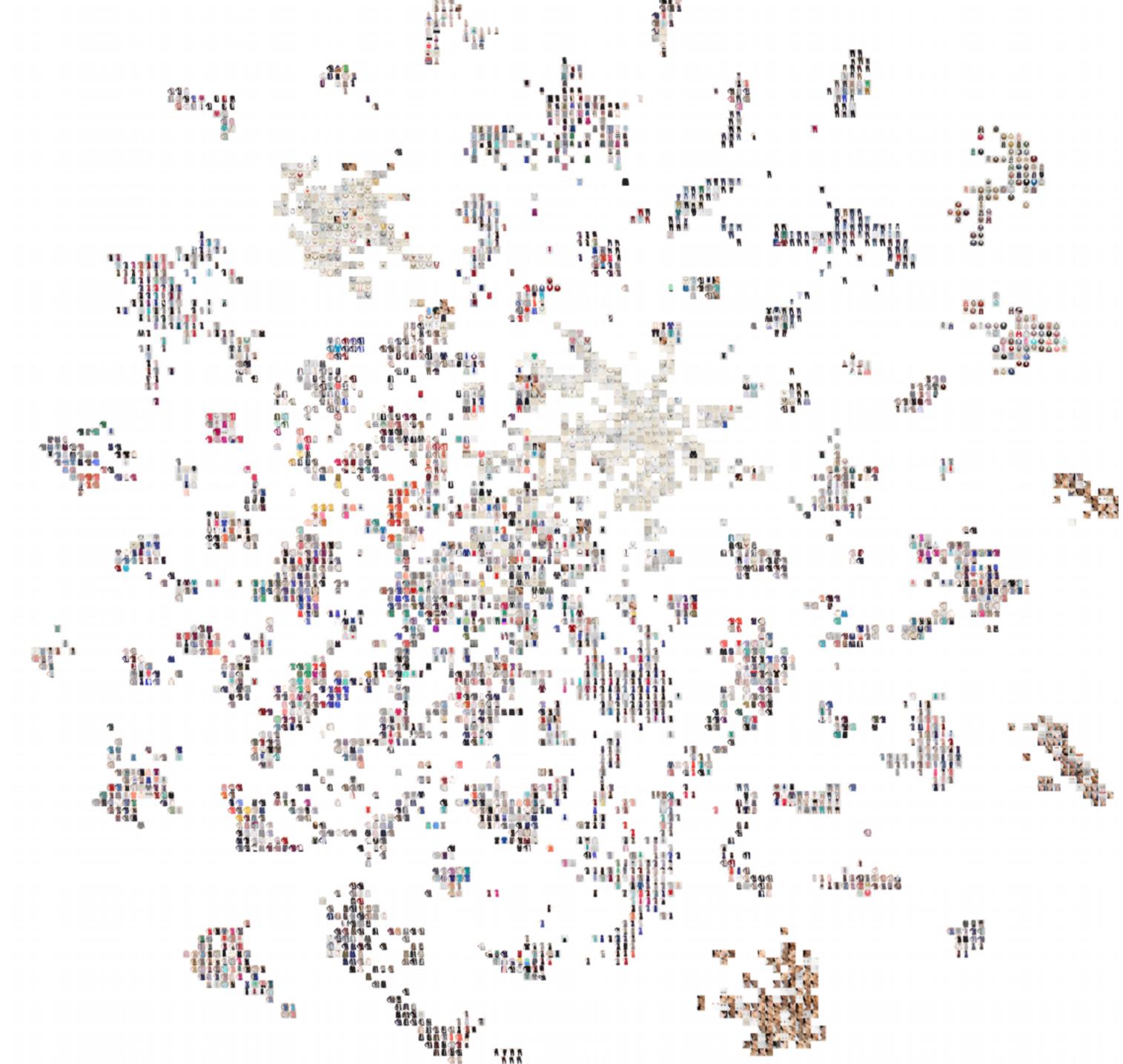
# + 'Pregnant'

 $= ITEM_{701333}$  $= ITEM_{901004}$  $= ITEM_{800456}$ 



# what about LDA?

# LDA on Client Item Descriptions





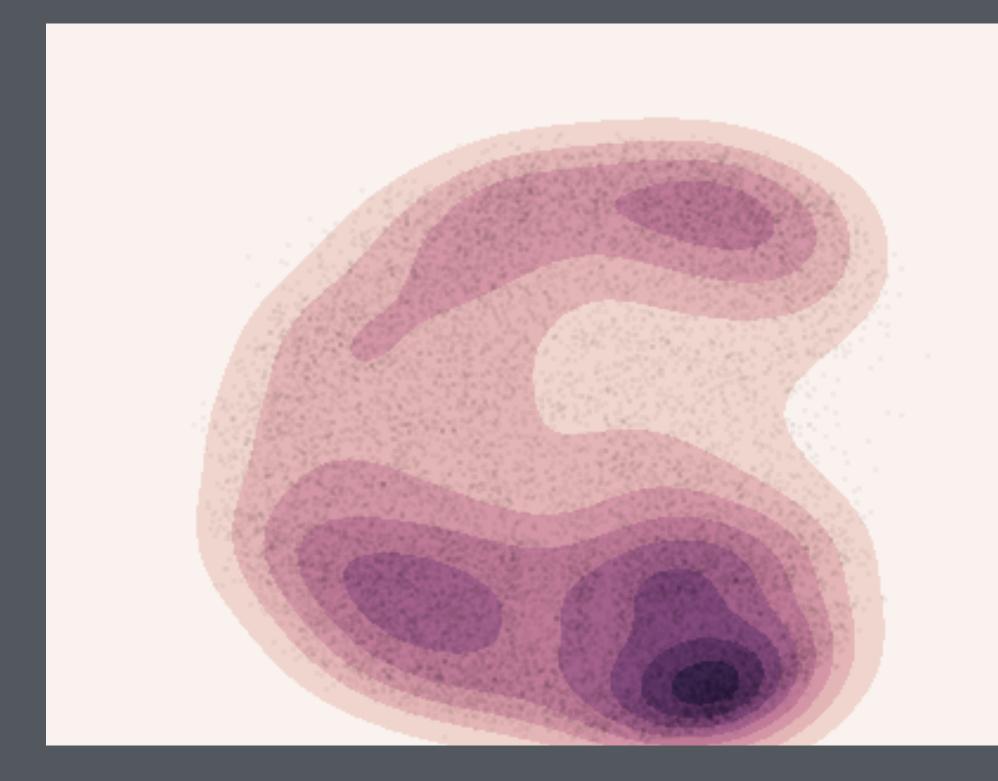






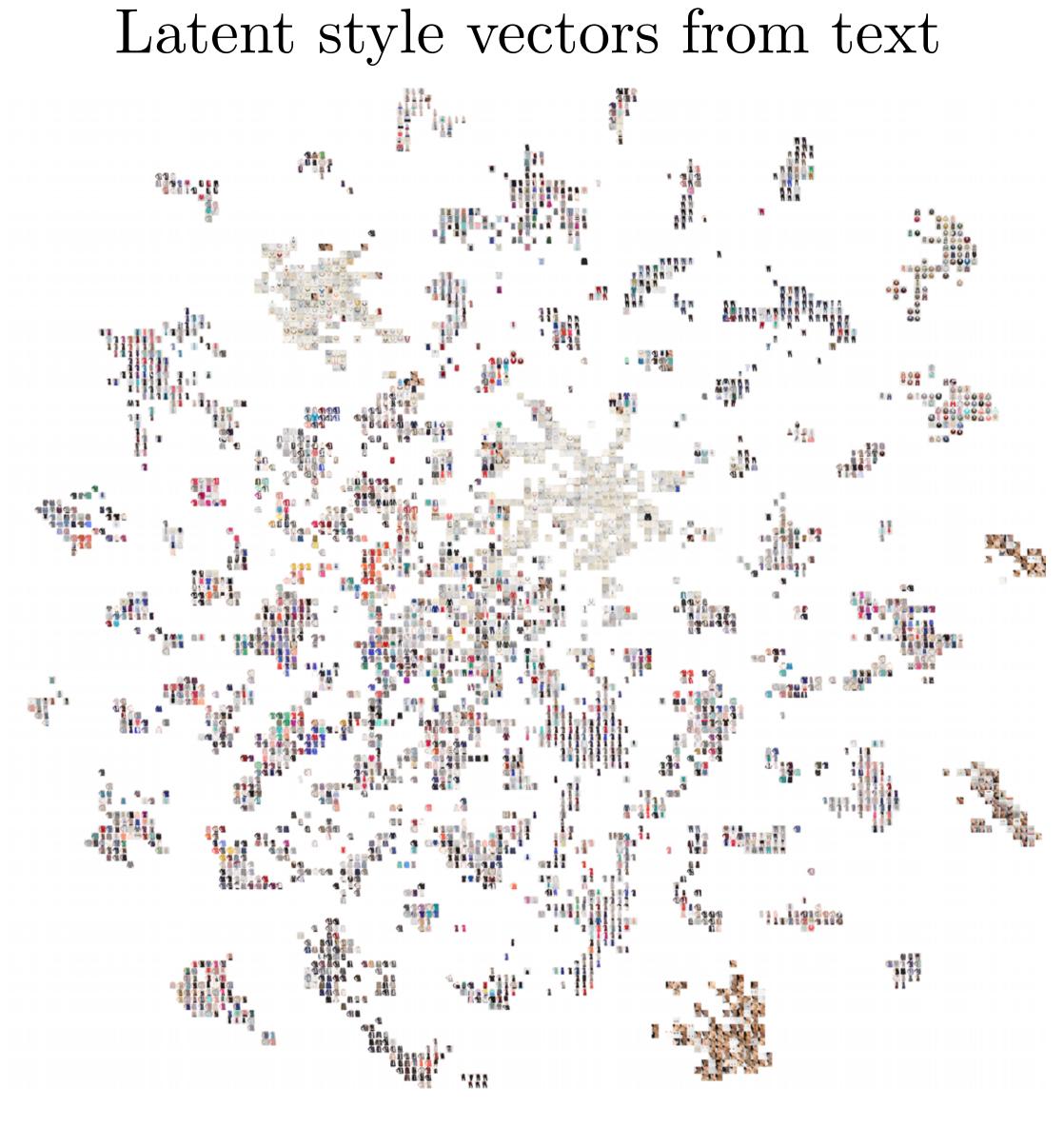


# Pairwise gamma correlation from style ratings



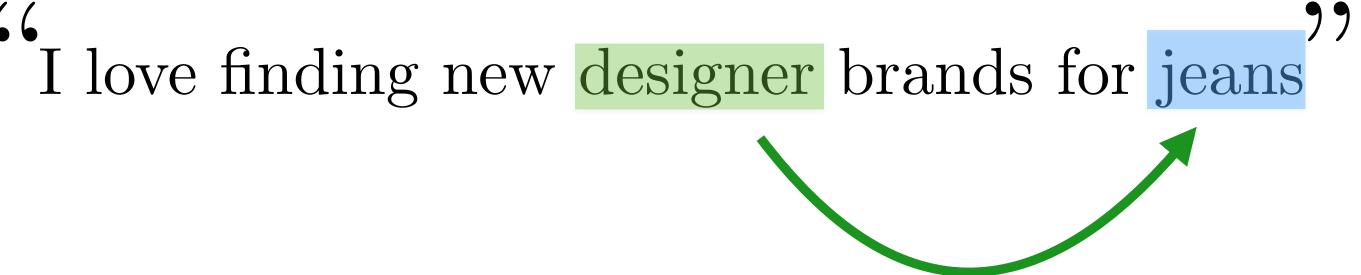
### Diversity from ratings

### Diversity from text



# lda vs word2vec

# 66



## word2vec is *local*: one word predicts a nearby word

### client\_comments

I really like the color of this top and the fit but for suc...

Almost too big. Love the dress though. Going to k...

EVERYTHING about this dress is absolutely PERFE...

This was a Winner to Update my look.... thanks...

Love love love!!! Nothing more to say here.

I love finding new designer brands for jeans. I usuall...

Didn't think I'd be too interested in jewelry but t...

Love love love the color, pattern and flowiness!

# I love finding new designer brands for jeans

## But text is usually organized.

# "I love finding new designer brands for jeans"

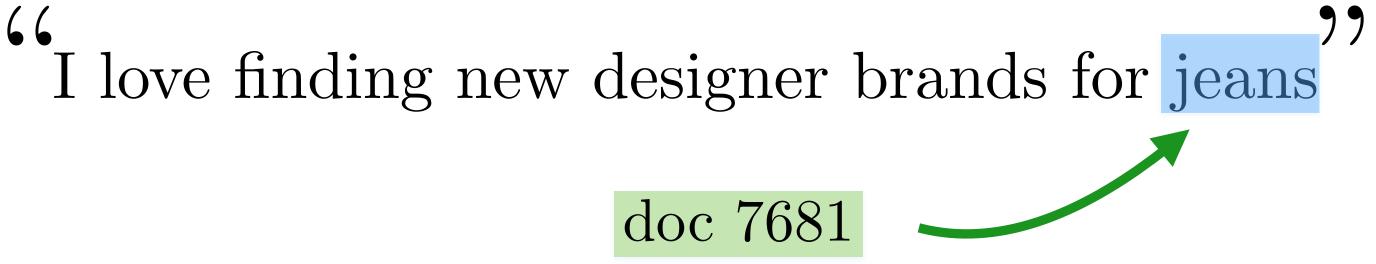
| client_comments                                                        | document_id |
|------------------------------------------------------------------------|-------------|
| I really like the color of this top and the fit but for suc            | 5943        |
| Almost too big. Love the dress though. Going to k                      | 5872        |
| EVERYTHING about this<br>dress is absolutely PERFE                     | 5951        |
| This was a Winner to<br>Update my look thanks                          | 4017        |
| Love love love!!! Nothing more to say here.                            | 5953        |
| l love finding new <mark>designer</mark><br>brands for jeans. I usuall | 7681        |
| Didn't think I'd be too<br>interested in jewelry but t                 | 3870        |
| Love love love the color,<br>pattern and flowiness!                    | 6286        |

## But text is usually organized.

| client_comments                                                        | document_id |
|------------------------------------------------------------------------|-------------|
| I really like the color of this top and the fit but for suc            | 5943        |
| Almost too big. Love the dress though. Going to k                      | 5872        |
| EVERYTHING about this dress is absolutely PERFE                        | 5951        |
| This was a Winner to<br>Update my look thanks                          | 4017        |
| Love love love!!! Nothing more to say here.                            | 5953        |
| l love finding new designer<br><mark>brands</mark> for jeans. I usuall | 7681        |
| Didn't thick I'd be too<br>interested in jewelry but t                 | 3870        |
| Love love love the color, pattern and flowiness!                       | 6286        |
|                                                                        |             |

# 66

In LDA, documents globally predict words.



typical word2vec vector

[-0.75, -1.25, -0.55, -0.12, +2.2]

### typical LDA document vector

[ 0%, 9%, 78%, 11%]

### typical word2vec vector

[-0.75, -1.25, -0.55, -0.12, +2.2]

All real values

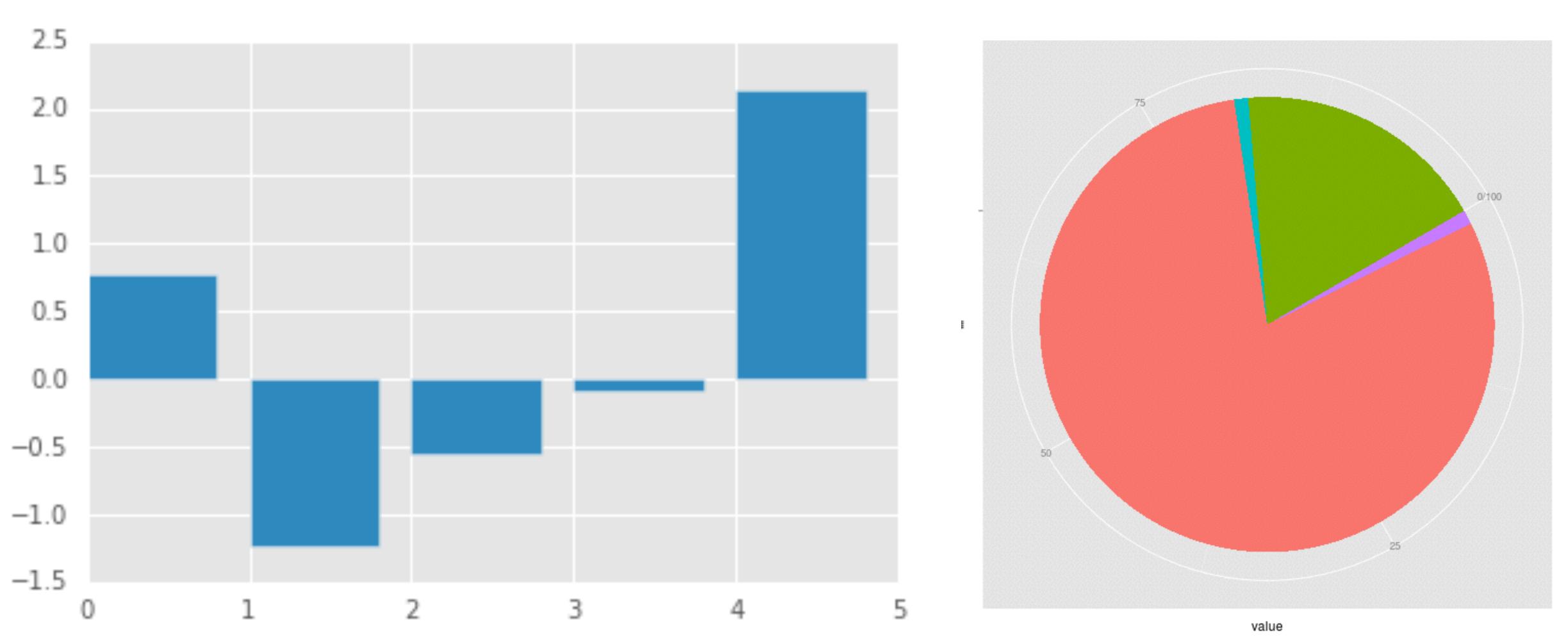
### typical LDA document vector

### [0%, 9%, **78%**, 11%]

### All sum to 100%

### 5D word2vec vector

[-0.75, -1.25, -0.55, -0.12, +2.2]



### 5D LDA document vector

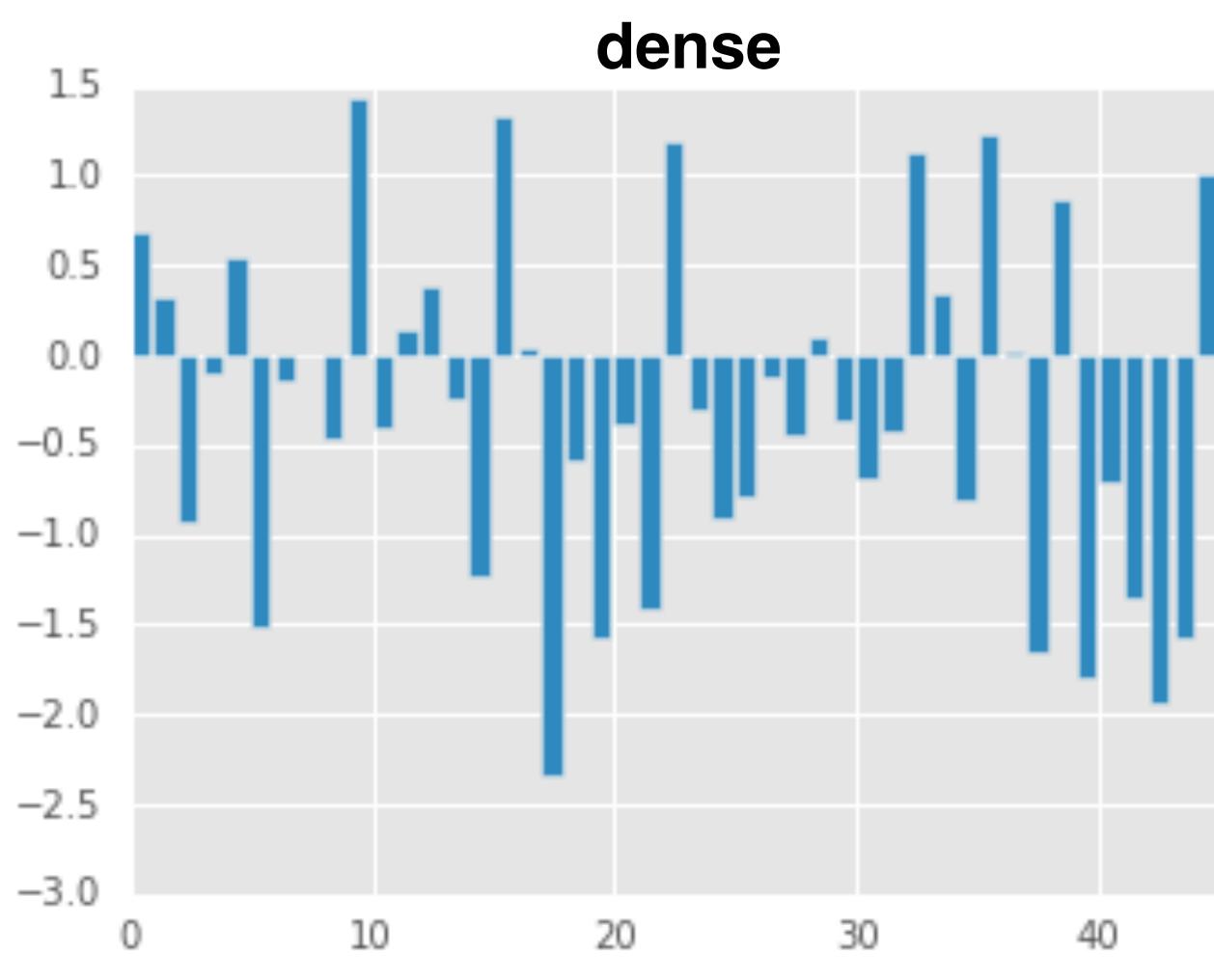
## [0%, 9%, **78%**, 11%]

Topics



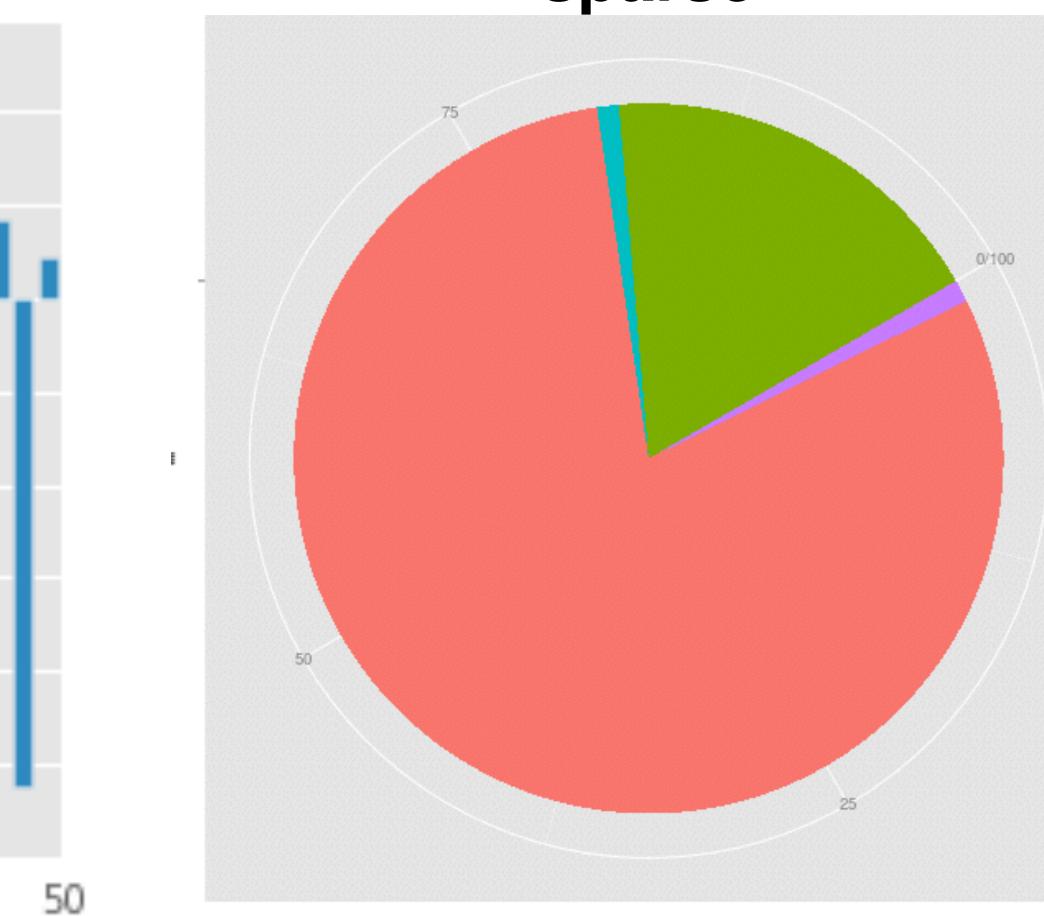


### 100D word2vec vector



## 100D LDA document vector

### [-0.75, -1.25, -0.55, -0.27, -0.94, 0.44, 0.05, 0.31 ... -0.12, +2.2] [ 0%0%0%0%0%0% ... 0%, 9%, **78%**, 11%]



sparse

value



### Topics



Bottoms Denim Jewelry Tops

### 100D word2vec vector

[-0.75, -1.25, -0.55, -0.27, -0.94, 0.44, 0.05, 0.31 ... -0.12, +2.2] [ 0%0%0%0%0%0% ... 0%, 9%, **78%**, **11**%]

## Similar in 100D ways (very **flexible**)

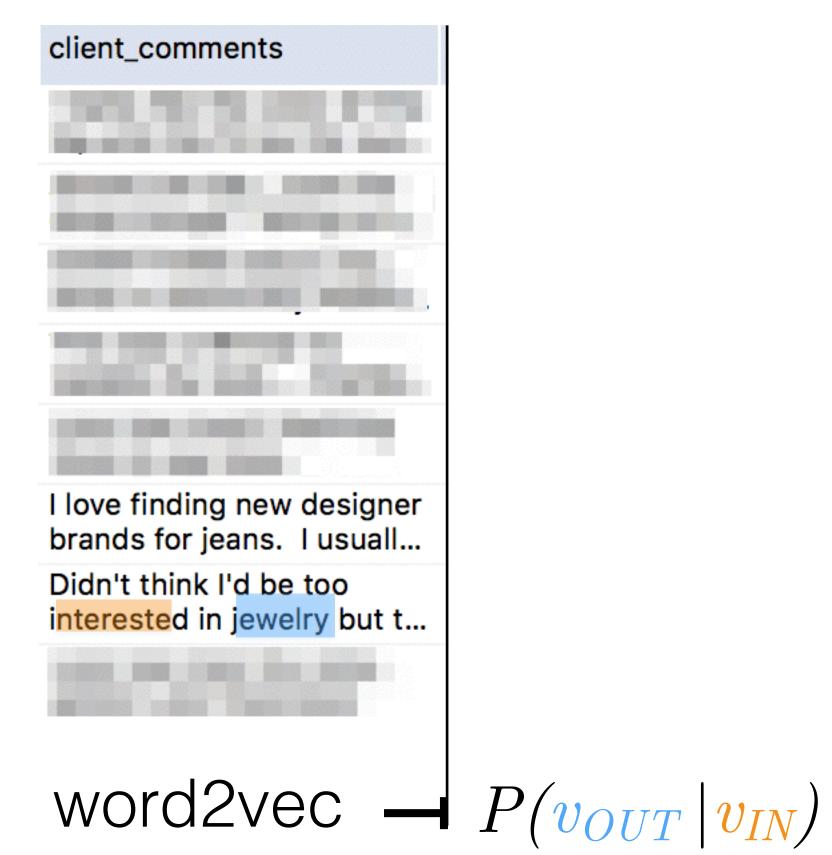
### 100D LDA document vector

# Similar in fewer ways (more **interpretable**)

+mixture +sparse



# can we do both? lda2vec







| client_comments                                           | document_id |                        |
|-----------------------------------------------------------|-------------|------------------------|
|                                                           | 5943        |                        |
|                                                           | 5872        |                        |
|                                                           | 5951        |                        |
|                                                           | 4017        |                        |
|                                                           | 5953        |                        |
| I love finding new designer<br>brands for jeans. I usuall | 7681        |                        |
| Didn't think I'd be too<br>interested in jewelry but t    | 3870        |                        |
|                                                           | 6286        |                        |
| word2vec -                                                |             |                        |
| LDA —                                                     |             | $P(v_{OUT}   v_{DOC})$ |
|                                                           |             |                        |



# this document is 80% high fashion

# this document is 60% style



| client_comments                                                                     | document_id | zip_code |
|-------------------------------------------------------------------------------------|-------------|----------|
|                                                                                     | 5943        | 52       |
|                                                                                     | 5872        | 194      |
|                                                                                     | 5951        | 158      |
|                                                                                     | 4017        | 991      |
|                                                                                     | 5953        | 193      |
| I love finding new designer<br>brands for jeans. I usuall                           | 7681        | 314      |
| Didn't think I'd be too<br>i <mark>ntereste</mark> d in <mark>jewelry b</mark> ut t | 3870        | 43       |
|                                                                                     | 6286        | 151      |
| word2vec –                                                                          |             |          |
|                                                                                     | 1           |          |
| LDA —                                                                               |             |          |



# this zip code is 80% hot climate

# this zip code is 60% outdoors wear



| client_comments                                                                     | document_id | zip_code | client_id |
|-------------------------------------------------------------------------------------|-------------|----------|-----------|
|                                                                                     | 5943        | 52       | 5977      |
|                                                                                     | 5872        | 194      | 5906      |
|                                                                                     | 5951        | 158      | 5985      |
|                                                                                     | 4017        | 991      | 4051      |
|                                                                                     | 5953        | 193      | 5987      |
| I love finding new designer<br>brands for jeans. I usuall                           | 7681        | 314      | 7715      |
| Didn't think I'd be too<br>i <mark>ntereste</mark> d in <mark>jewelry b</mark> ut t | 3870        | 43       | 3904      |
|                                                                                     | 6286        | 151      | 6320      |
| word2vec –                                                                          |             |          |           |
|                                                                                     | 1           |          |           |
| LDA —                                                                               |             |          |           |



# this client is 80% sporty this client is 60% casual wear

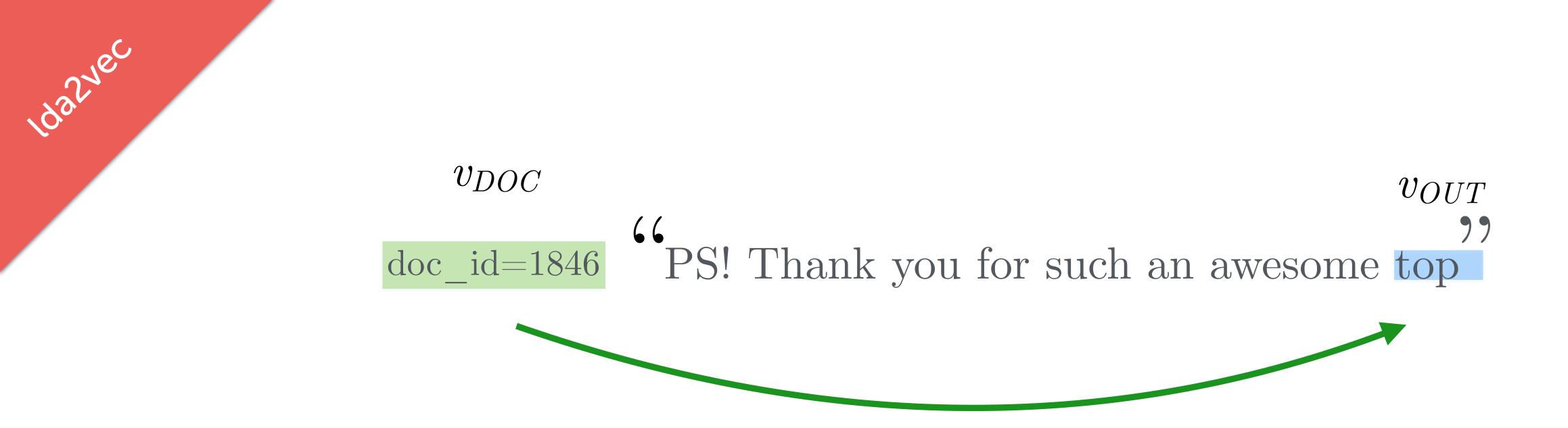




 $P(v_{OUT} | v_{IN})$ 



word2vec predicts *locally:* one word predicts a nearby word



## LDA predicts a word from a *global* context

 $P(v_{OUT} | v_{DOC})$ 



# can we predict a word both *locally* and *globally*?



# can we predict a word both *locally* and *globally*?

 $P(v_{OUT} | v_{IN} + v_{DOC})$ 



# can we predict a word both *locally* and *globally*?

 $P(v_{OUT})$ 



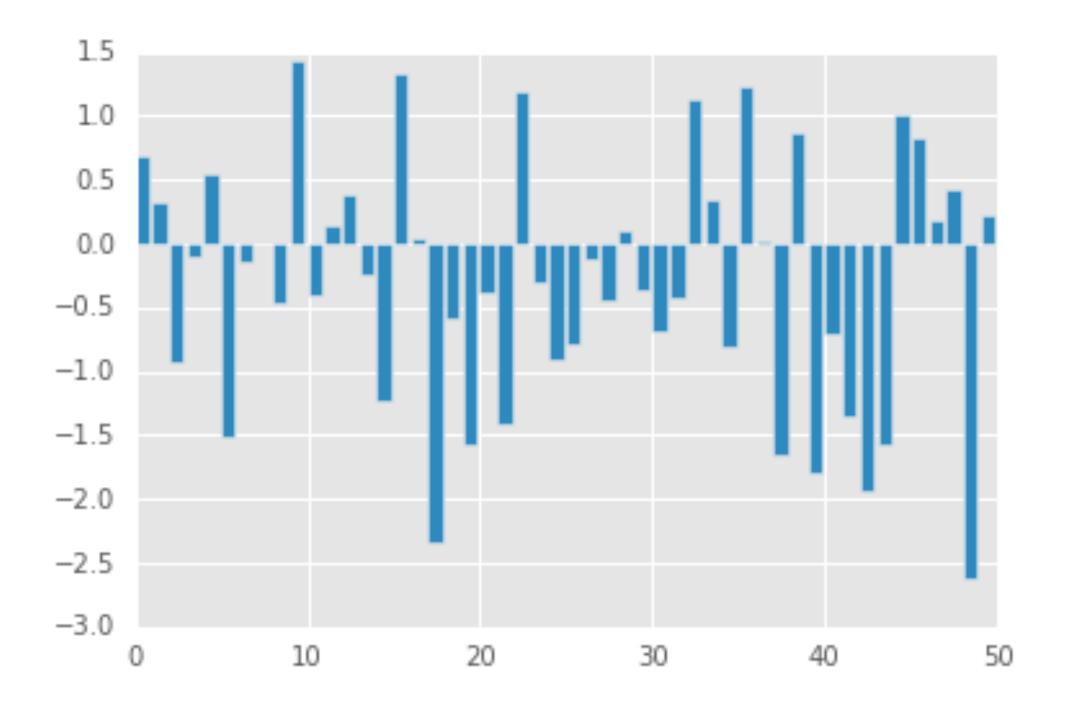
$$v_{IN} + v_{DOC}$$

\*very similar to the Paragraph Vectors / doc2vec

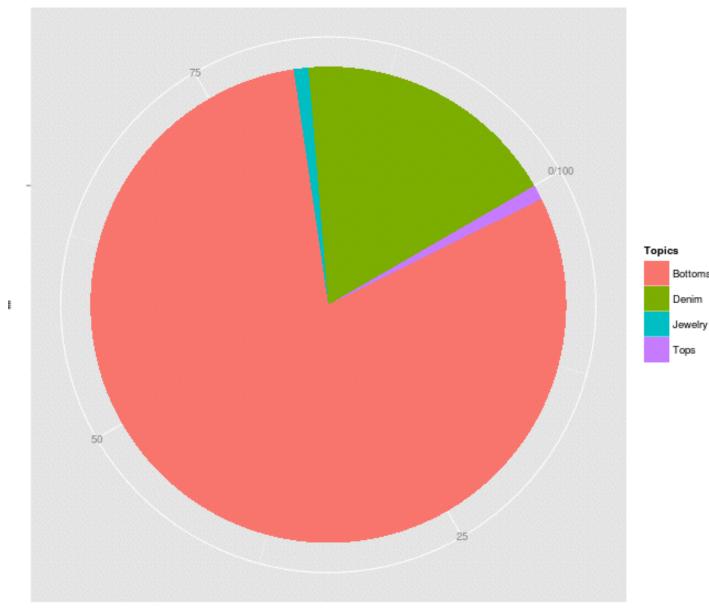














We're missing *mixtures* & *sparsity*.



Let's make  $v_{DOC}$  into a mixture...



### Let's make $v_{DOC}$ into a mixture...

 $v_{DOC} = a v_{topic1} + b v_{topic2} + \dots$ 

(up to k topics)



### Let's make $v_{DOC}$ into a mixture...

Trinitarian baptismal Pentecostals Bede schismatics excommunication



 $v_{DOC} = a v_{topic1} + b v_{topic2} + \dots$ 



Trinitarian baptismal Pentecostals Bede schismatics excommunication

### Let's make $v_{DOC}$ into a mixture...



 $v_{DOC} = a v_{topic1} + b v_{topic2} + \dots$ 



Trinitarian baptismal Pentecostals Bede schismatics excommunication

### Let's make $v_{DOC}$ into a mixture...



 $v_{DOC} = a v_{topic1} + b v_{topic2} + \dots$ 

Milosevic absentee Indonesia Lebanese Isrealis Karadzic



Trinitarian baptismal Pentecostals bede schismatics excommunication

### Let's make $v_{DOC}$ into a mixture...



 $v_{DOC} = a v_{topic1} + b v_{topic2} + \dots$ 

# topic 2 = "politics" Milosevic absentee Indonesia Lebanese Isrealis Karadzic





Trinitarian baptismal Pentecostals bede schismatics excommunication

 $v_{DOC} = 10\%$  religion + 89% politics +...

### Let's make $v_{DOC}$ into a mixture...

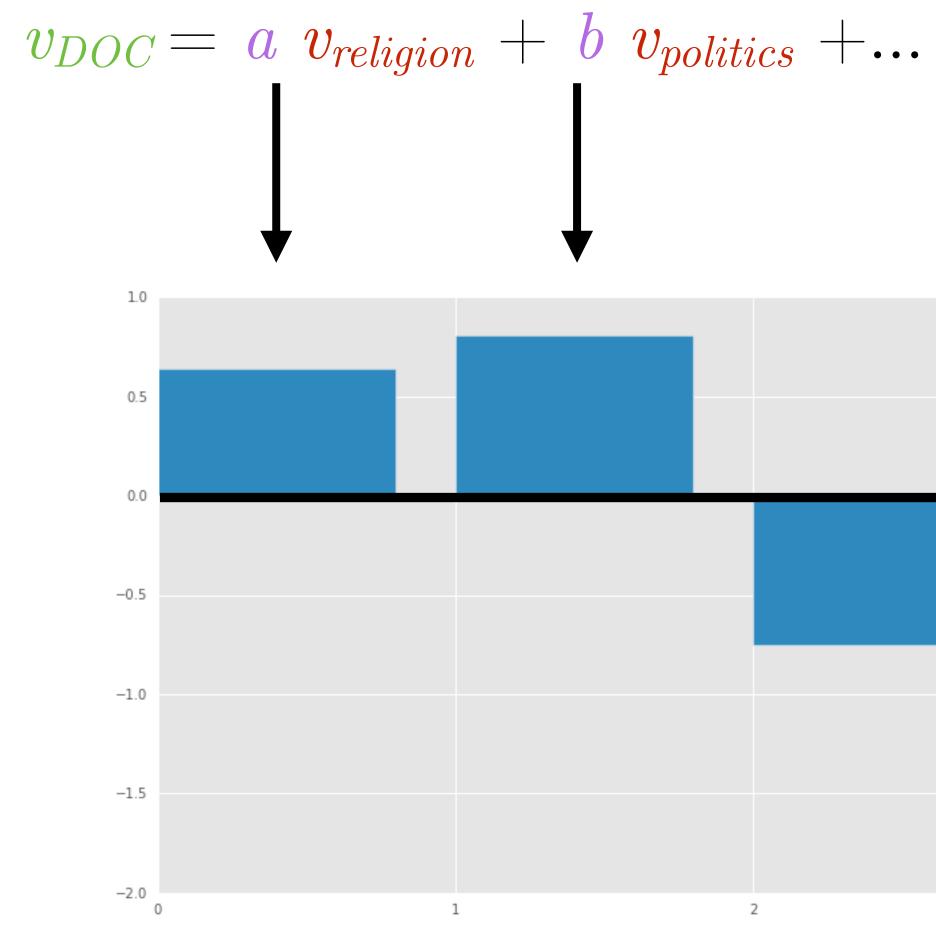
# topic 2 = "politics" Milosevic absentee Indonesia Lebanese Isrealis Karadzic





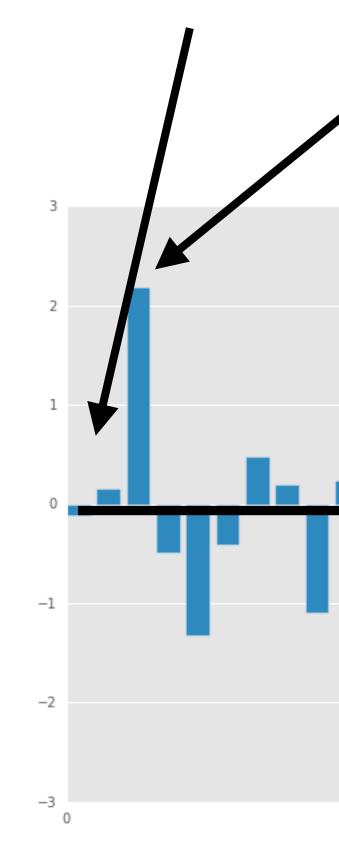
 $v_{DOC} = a v_{religion} + b v_{politics} + \dots$   $\int \int (-0.75, -1.25, \dots)$ 



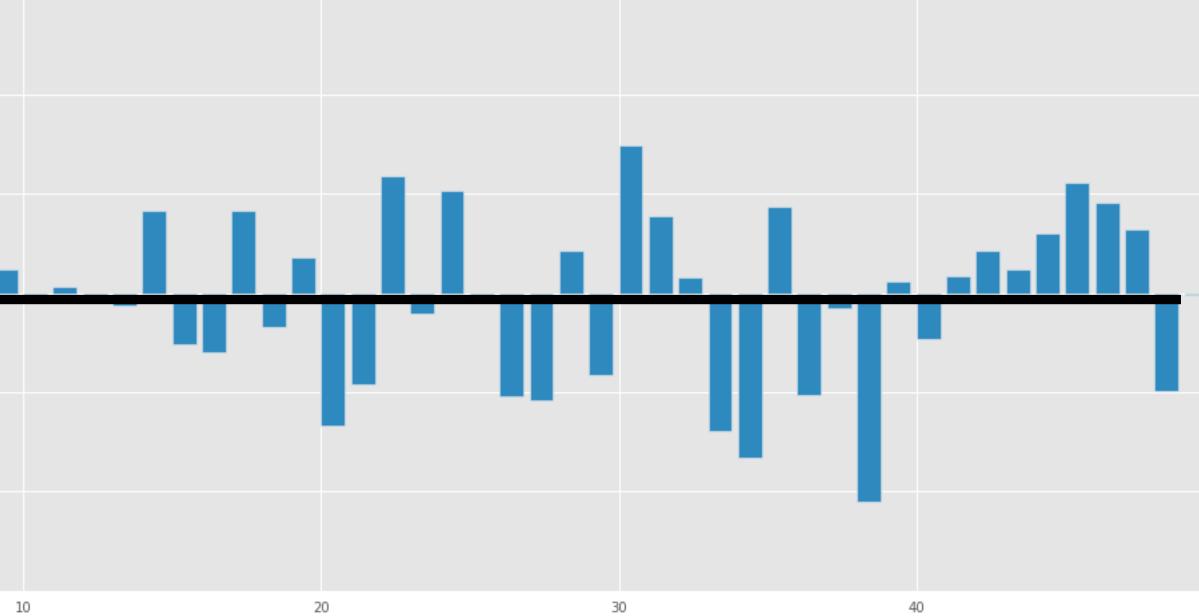


|   | _ |   |   |   | - |
|---|---|---|---|---|---|
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
|   |   |   |   |   |   |
| 1 | 2 | 3 | 3 | 4 |   |





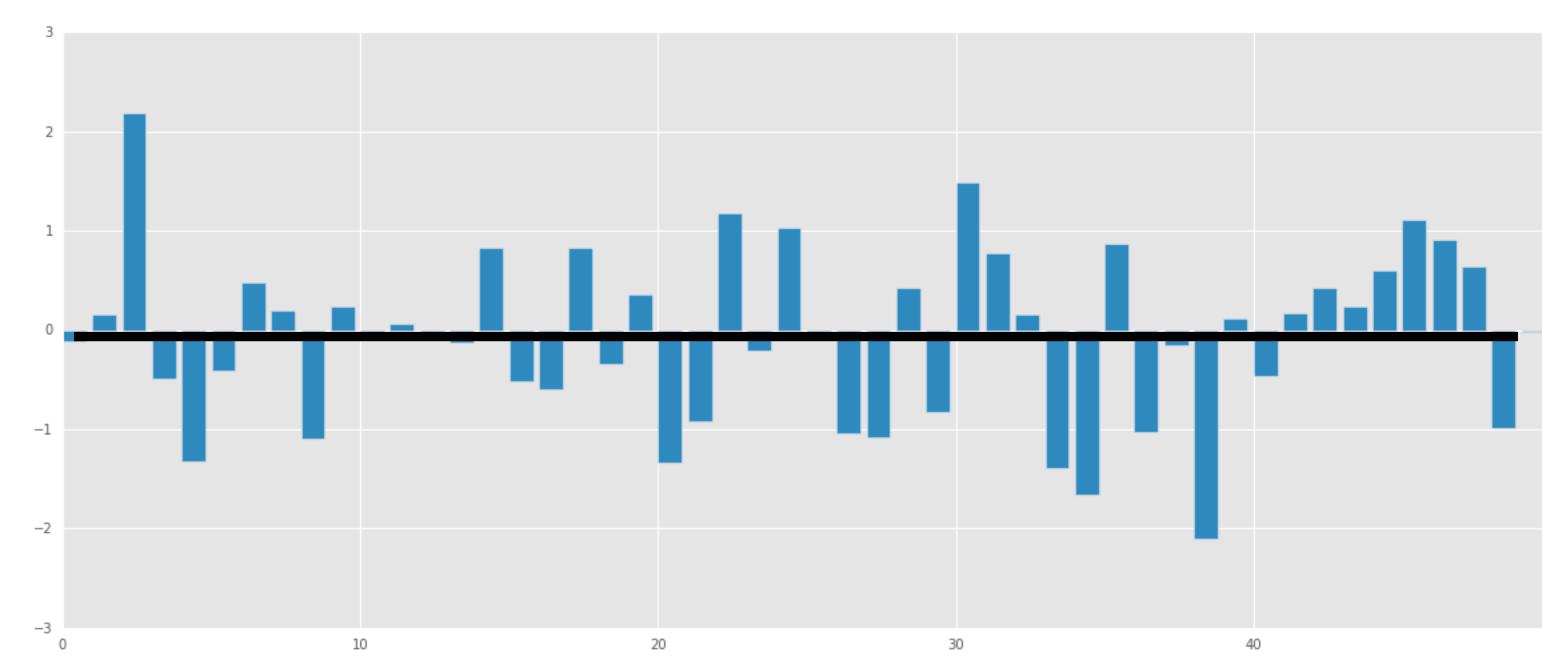
 $v_{DOC} = a v_{religion} + b v_{politics} + \dots$ 





 $v_{DOC} = a v_{religion} + b v_{politics} + \dots$ 

 $\{a, b, c...\} \sim dirichlet(alpha)$ 

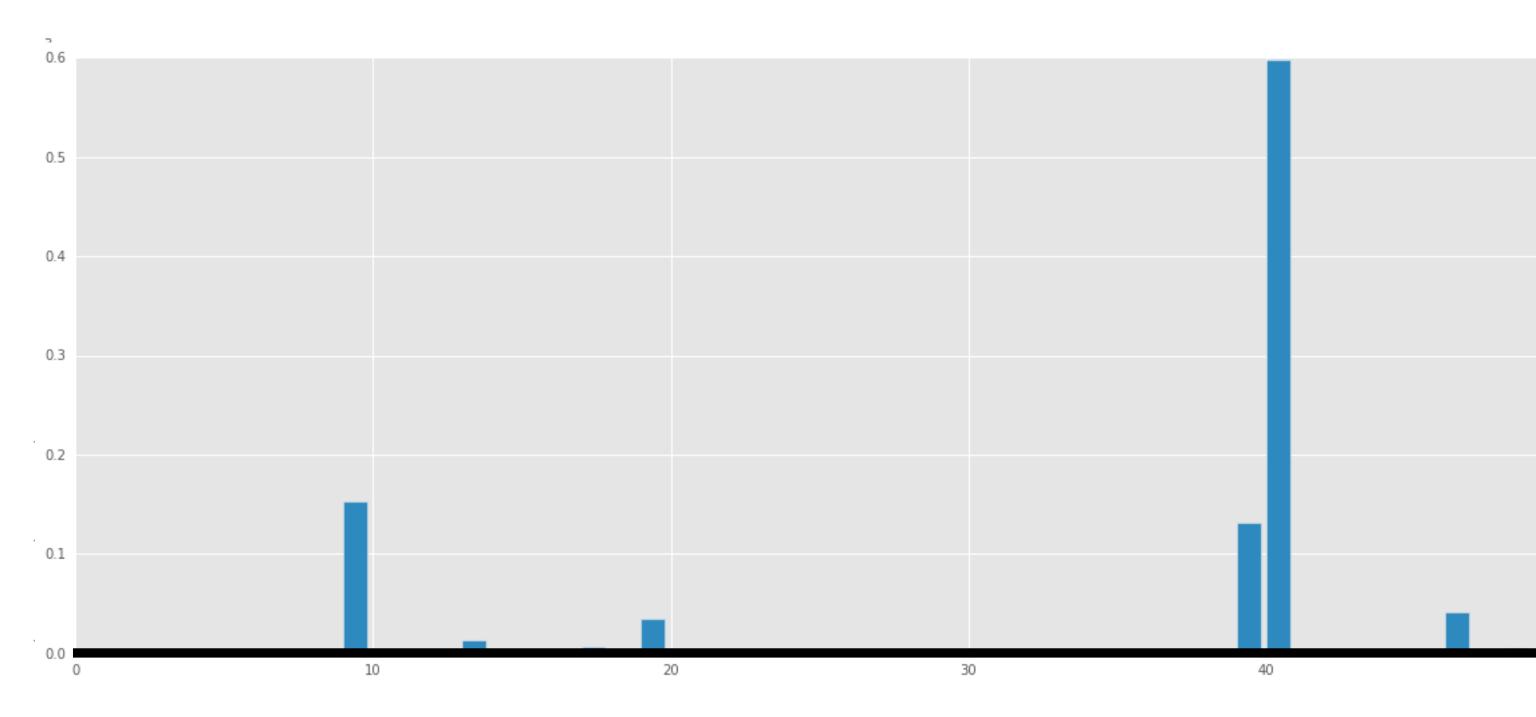


50



 $v_{DOC} = a v_{religion} + b v_{politics} + \dots$ 





 $\{a, b, c...\} \sim dirichlet(alpha)$ 



| client_comments                                                       | document_id |                       |
|-----------------------------------------------------------------------|-------------|-----------------------|
|                                                                       | 5943        |                       |
|                                                                       | 5872        |                       |
|                                                                       | 5951        |                       |
|                                                                       | 4017        |                       |
|                                                                       | 5953        |                       |
| I love finding new designer<br>brands for jeans. I usuall             | 7681        |                       |
| Didn't think I'd be too<br>i <mark>ntereste</mark> d in jewelry but t | 3870        |                       |
|                                                                       | 6286        |                       |
| word2vec -                                                            |             |                       |
| LDA —                                                                 |             |                       |
| Ida2vec –                                                             |             | $P(v_{OUT}   v_{II})$ |



# this document is 80% high fashion

## this document is 60% style

 $IN + v_{DOC}$ 



| client_comments                                                                     | document_id | zip_code |
|-------------------------------------------------------------------------------------|-------------|----------|
|                                                                                     | 5943        | 52       |
|                                                                                     | 5872        | 194      |
|                                                                                     | 5951        | 158      |
|                                                                                     | 4017        | 991      |
|                                                                                     | 5953        | 193      |
| I love finding new designer brands for jeans. I usuall                              | 7681        | 314      |
| Didn't think I'd be too<br>i <mark>ntereste</mark> d in <mark>jewelry b</mark> ut t | 3870        | 43       |
|                                                                                     | 6286        | 151      |
| word2vec -                                                                          |             |          |
| LDA —                                                                               |             |          |
| Ida2vec –                                                                           |             |          |



 $- \mathbf{P}(v_{OUT} | v_{IN} + v_{DOC} + v_{ZIP})$ 



| client_comments                                                                     | document_id | zip_code |              |
|-------------------------------------------------------------------------------------|-------------|----------|--------------|
|                                                                                     | 5943        | 52       |              |
|                                                                                     | 5872        | 194      |              |
|                                                                                     | 5951        | 158      |              |
|                                                                                     | 4017        | 991      |              |
|                                                                                     | 5953        | 193      |              |
| I love finding new designer<br>brands for jeans. I usuall                           | 7681        | 314      |              |
| Didn't think I'd be too<br>i <mark>ntereste</mark> d in <mark>jewelry b</mark> ut t | 3870        | 43       |              |
|                                                                                     | 6286        | 151      |              |
| word2vec —<br>LDA —                                                                 |             |          |              |
| Ida2vec –                                                                           |             |          | $P(v_{OUT} $ |



# this zip code is 80% hot climate

# this zip code is 60% outdoors wear

 $v_{IN} + v_{DOC} + v_{ZIP}$ 



| client_comments                                                                     | document_id | zip_code | client_id |  |
|-------------------------------------------------------------------------------------|-------------|----------|-----------|--|
|                                                                                     | 5943        | 52       | 5977      |  |
|                                                                                     | 5872        | 194      | 5906      |  |
|                                                                                     | 5951        | 158      | 5985      |  |
|                                                                                     | 4017        | 991      | 4051      |  |
|                                                                                     | 5953        | 193      | 5987      |  |
| I love finding new designer<br>brands for jeans. I usuall                           | 7681        | 314      | 7715      |  |
| Didn't think I'd be too<br>i <mark>ntereste</mark> d in <mark>jewelry b</mark> ut t | 3870        | 43       | 3904      |  |
|                                                                                     | 6286        | 151      | 6320      |  |
| word2vec -                                                                          |             |          |           |  |
| LDA —                                                                               |             |          |           |  |
| Ida2vec –                                                                           |             |          |           |  |



# this client is 80% sporty

## this client is 60% casual wear

 $P(v_{OUT} | v_{IN} + v_{DOC} + v_{ZIP} + v_{CLIENTS})$ 



| client_comments                                                                     | document_id | zip_code | client_id | sold |
|-------------------------------------------------------------------------------------|-------------|----------|-----------|------|
|                                                                                     | 5943        | 52       | 5977      | 1    |
|                                                                                     | 5872        | 194      | 5906      | 1    |
|                                                                                     | 5951        | 158      | 5985      | 1    |
|                                                                                     | 4017        | 991      | 4051      | 1    |
|                                                                                     | 5953        | 193      | 5987      | 1    |
| I love finding new designer<br>brands for jeans. I usuall                           | 7681        | 314      | 7715      | 1    |
| Didn't think I'd be too<br>i <mark>ntereste</mark> d in <mark>jewelry b</mark> ut t | 3870        | 43       | 3904      | 1    |
|                                                                                     | 6286        | 151      | 6320      | 1    |
| word2vec –<br>LDA –<br>Ida2vec –                                                    |             |          |           |      |

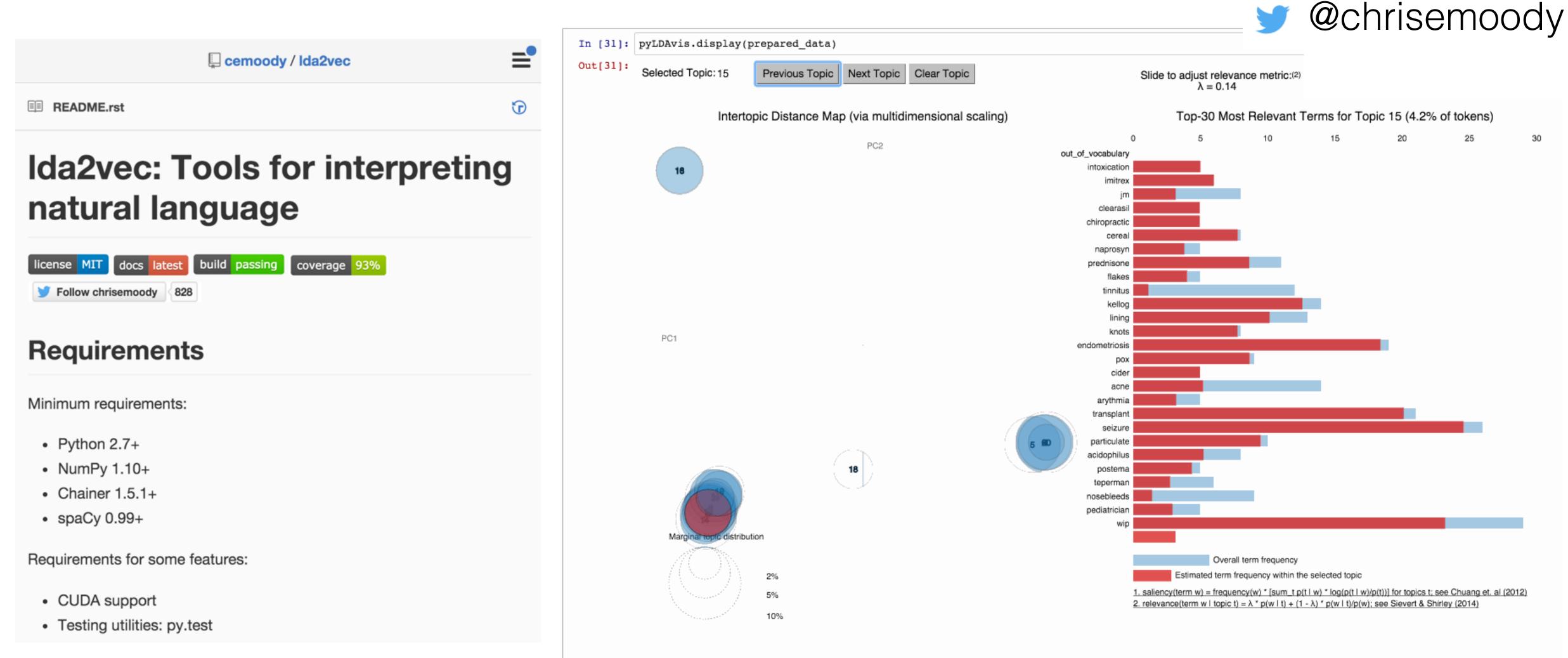


# Can also make the topics supervised so that they predict an outcome.

 $P(v_{OUT} | v_{IN} + v_{DOC} + v_{ZIP} + v_{CLIENTS})$  $P(sold \mid v_{CLIENTS})$ 







## API Ref docs (no narrative docs) GPU Decent test coverage

#### uses pyldavis





30

## Can we model topics to sentences? Ida2lstm





# doc\_id=1846 PS! Thank





Can we represent the internal LSTM states as a dirichlet mixture?

## Can we model topics to sentences? lda2lstm







## Can we model topics to images? Ida2ae

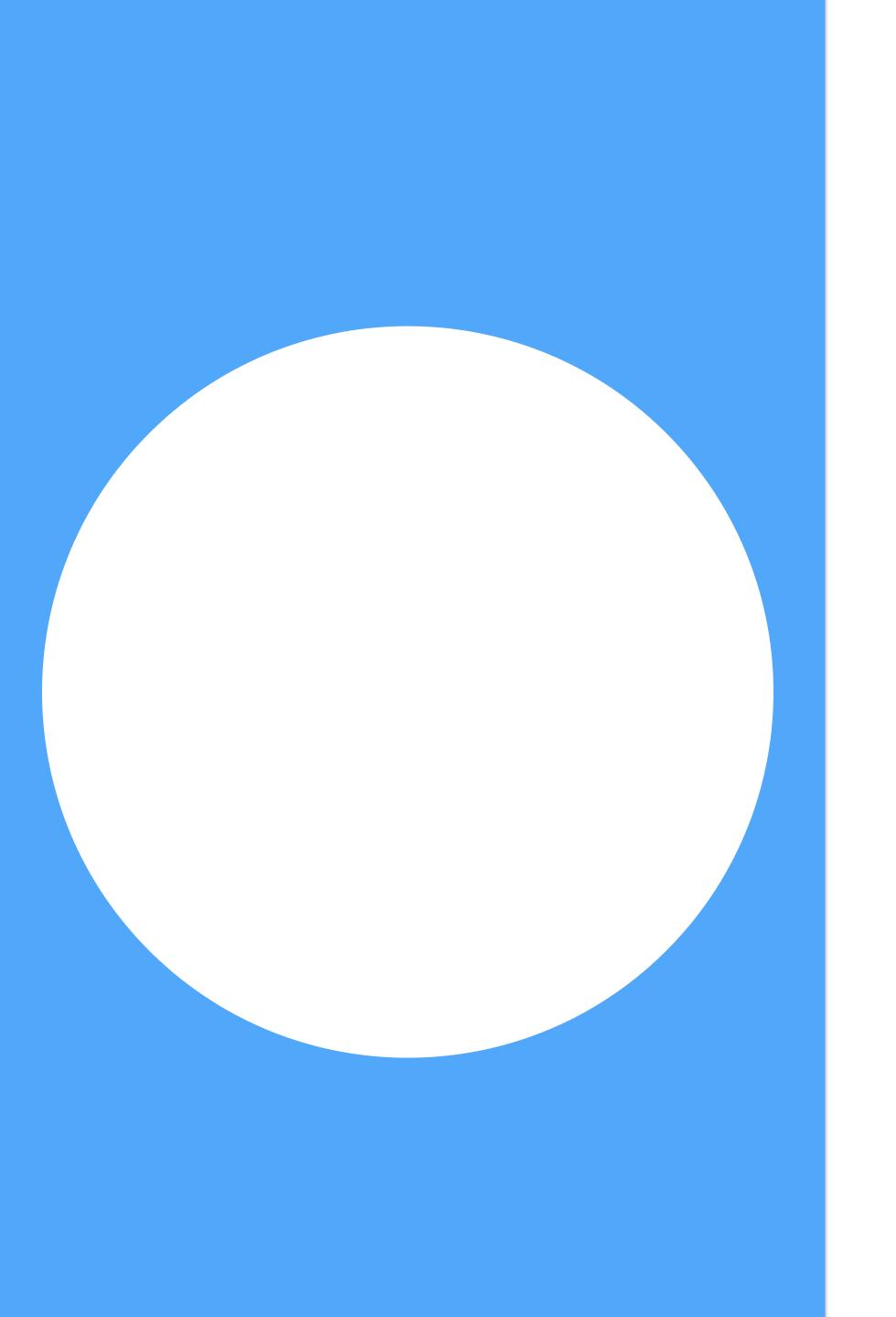
<section-header>



@chrisemoody Multithreaded Stitch Fix



#### Bonus slides

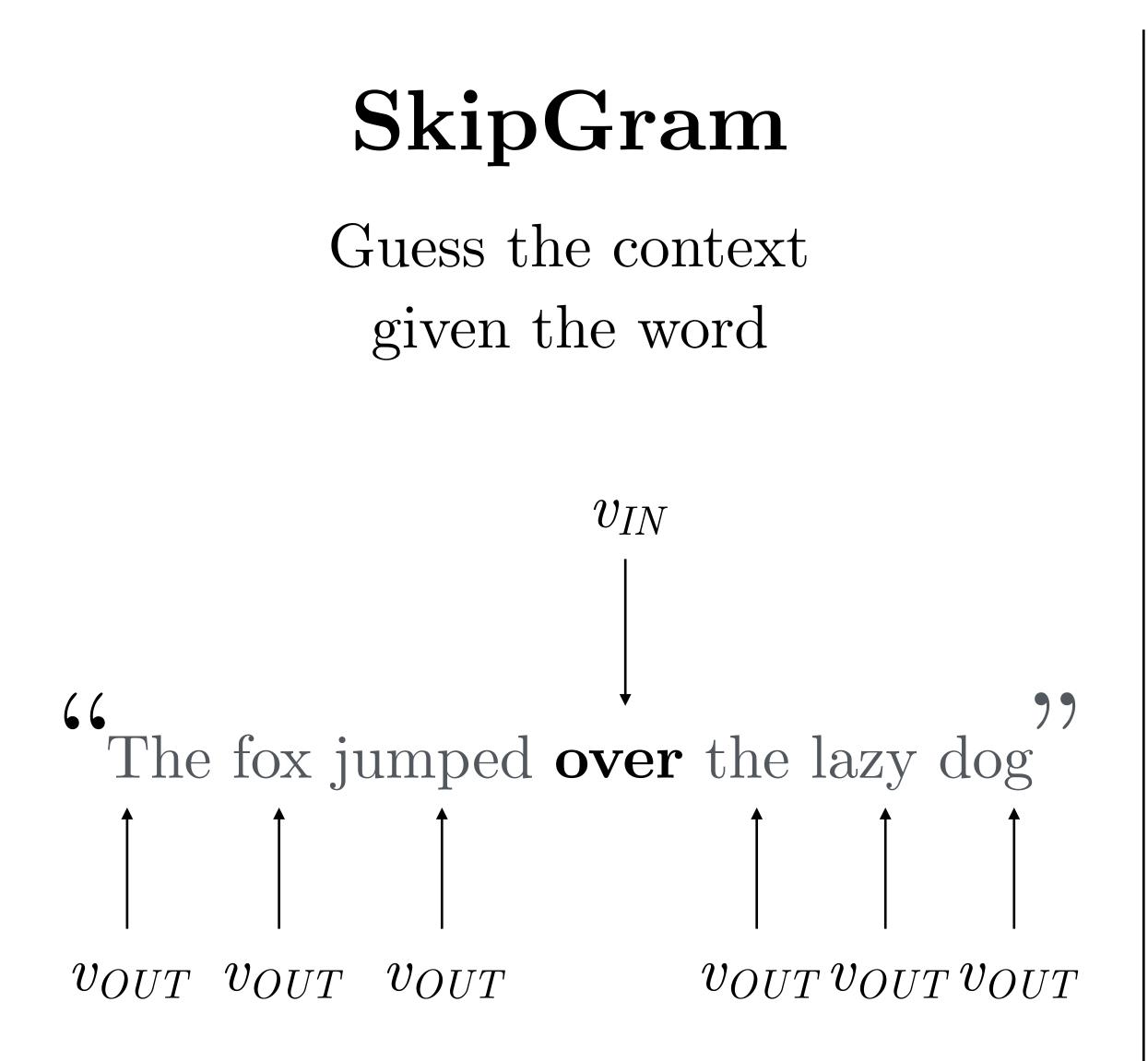


# Paragraph Vectors (Just extend the context window)

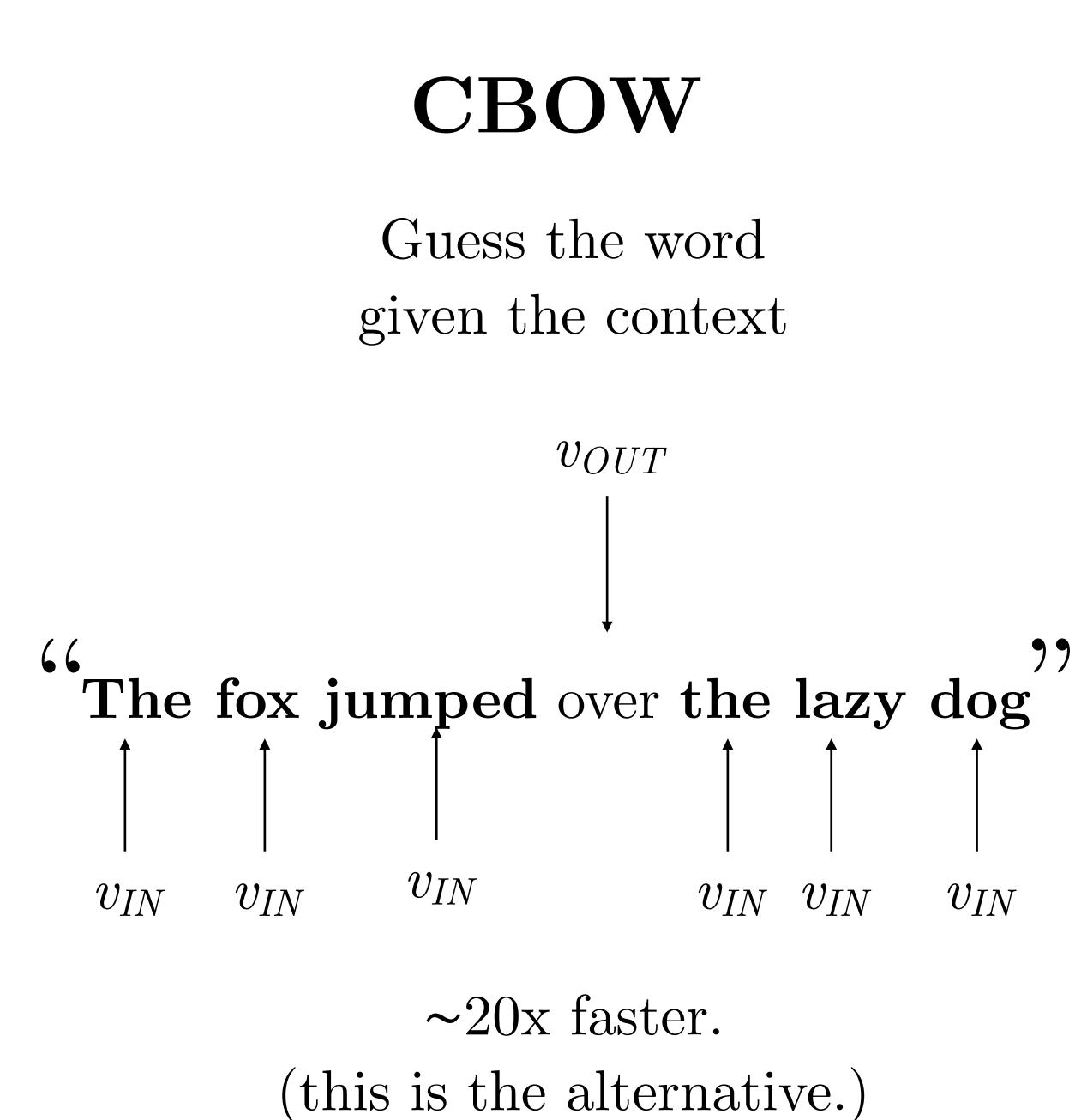
- Content dependency
  - (Change the window grammatically)
- Social word2vec (deepwalk)
  - (Sentence is a walk on the graph)
- Spotify
  - (Sentence is a playlist of song\_ids)
- Stitch Fix
  - (Sentence is a shipment of five items)

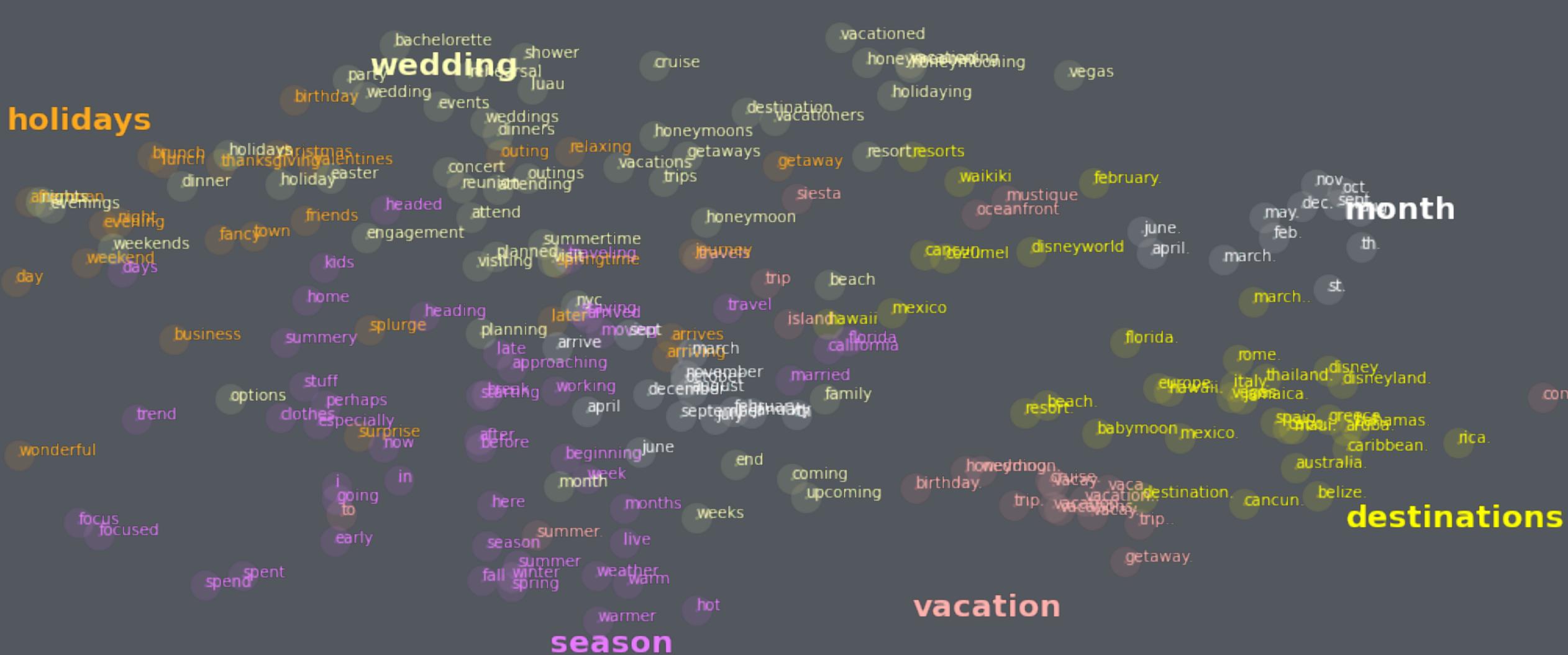


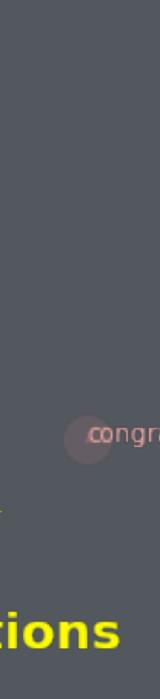
| Relationship         | Example 1           | Example 2         | Example 3            |
|----------------------|---------------------|-------------------|----------------------|
| France - Paris       | Italy: Rome         | Japan: Tokyo      | Florida: Tallahassee |
| big - bigger         | small: larger       | cold: colder      | quick: quicker       |
| Miami - Florida      | Baltimore: Maryland | Dallas: Texas     | Kona: Hawaii         |
| Einstein - scientist | Messi: midfielder   | Mozart: violinist | Picasso: painter     |
| Sarkozy - France     | Berlusconi: Italy   | Merkel: Germany   | Koizumi: Japan       |
| copper - Cu          | zinc: Zn            | gold: Au          | uranium: plutonium   |
| Berlusconi - Silvio  | Sarkozy: Nicolas    | Putin: Medvedev   | Obama: Barack        |
| Microsoft - Windows  | Google: Android     | IBM: Linux        | Apple: iPhone        |
| Microsoft - Ballmer  | Google: Yahoo       | IBM: McNealy      | Apple: Jobs          |
| Japan - sushi        | Germany: bratwurst  | France: tapas     | USA: pizza           |



Better at syntax. (this is the one we went over)







#### Perfect Great Stylist

## I loved every choice in this fix!! Great job!



My measurements are 36-28-32. If that helps. I like wearing some clothing that is fitted. Very hard for me to find pants that fit right.

## Body Fit



Really enjoyed the experience and the pieces, sizing for tops was too big. Looking forward to my next box!

# Sizing Excited for next



#### Perfect Almost Bought

#### It was a great fix. Loved the two items I kept and the three I sent back were close!



# What I didn't mention

A lot of text (only if you have a specialized vocabulary)

Cleaning the text

Memory & performance

Traditional databases aren't well-suited

False positives

and now for something completely crazy

All of the following ideas will change what 'words' and 'context' represent.



On the day he took office, President Obama reached out to America's enemies, offering in his first inaugural address to extend a hand if you are willing to unclench your fist. More than six years later, he has arrived at a moment of truth in testing that

What about summarizing documents?



# On the day he took office, President Obama reached out to America's enemies, offering in his first inaugural address to extend a hand if you are willing to unclench your fist. More than six years later, he has arrived at a moment of truth in testing that

the definitive ansvOUB whether Mr. Obama's audacious gamOUTill pay off. The fist

Normal skipgram extends C words before, and C words after.

#### IN





# 

OUT

A document vector simply extends the context to the whole document.

## doc\_1347

IN

On the day he took office, President Obama reached out to America's enemies, offering in his first inaugural address to extend a hand if you are willing to unclench your fist. More than six years later, he has arrived at a moment of truth in testing that The framework nuclear agreement he reached with Iran on Thursday did not provide the definitive ansvolUT whether Mr. Obama's audacious gamoUT ill pay off. The fist

OUT



from gensim.models import Doc2Vec fn = "item document vectors" model = Doc2Vec.load(fn) model.most similar('pregnant') matches = list(filter(lambda x: 'SENT ' in x[0], matches))

# ['... I am currently 23 weeks pregnant...', # '...I'm now 10 weeks pregnant...', # '...not showing too much yet...', # '...15 weeks now. Baby bump...', # '...6 weeks post partum!...', # '...12 weeks postpartum and am nursing...', # '... I have my baby shower that...', # '...am still breastfeeding...', ... I would love an outfit for a baby shower... ']



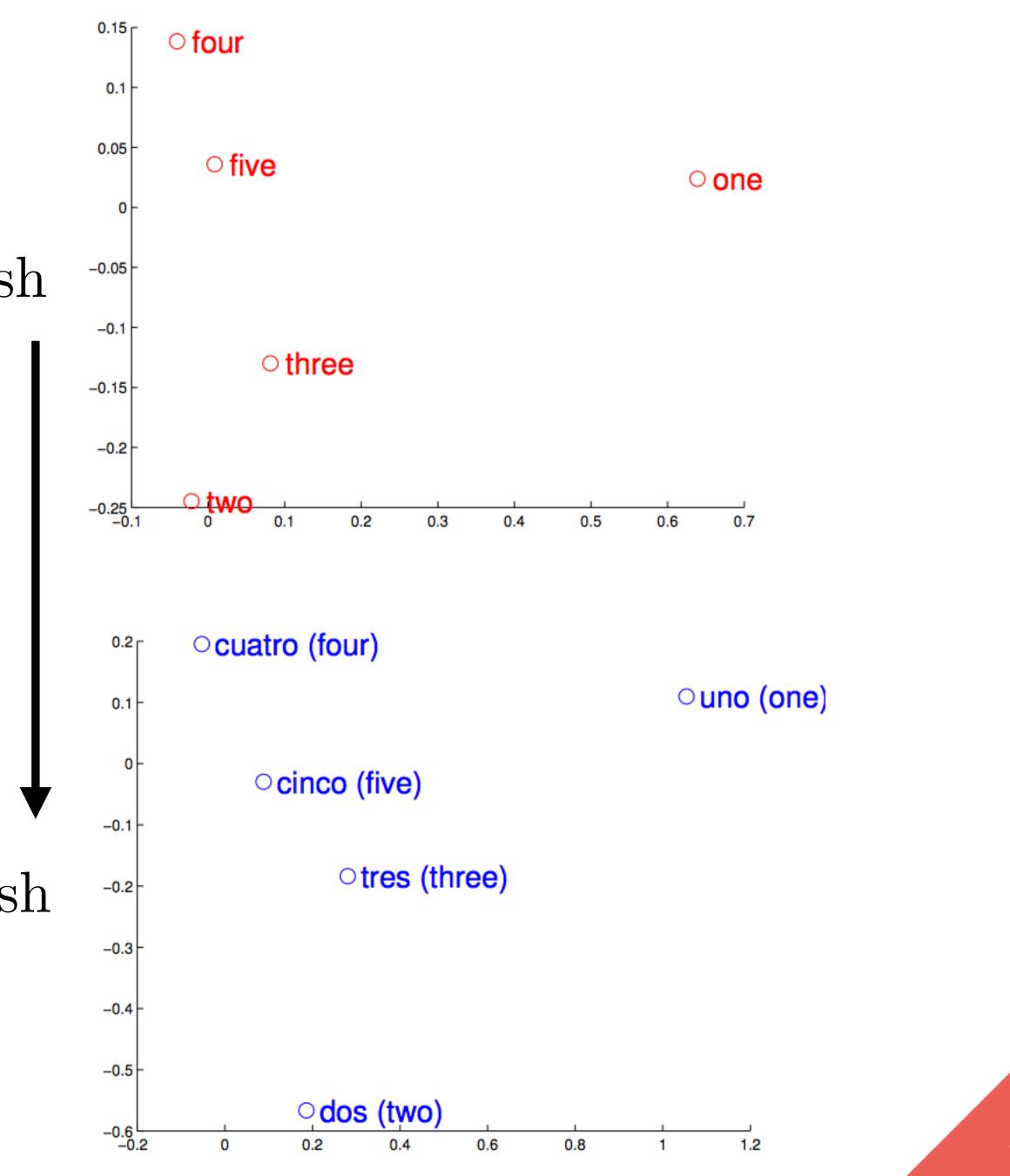
#### English

# translation

(using just a rotation matrix)

Matrix Rotation

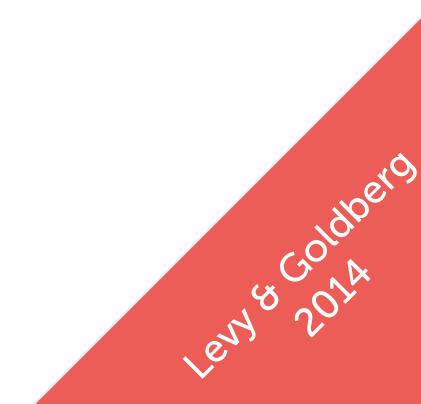
Spanish



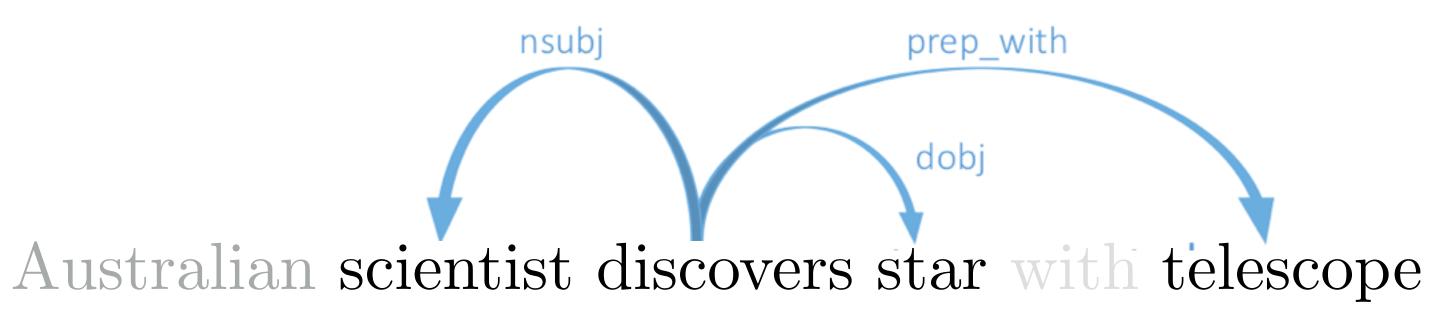


## Australian scientist **discovers** star with telescope

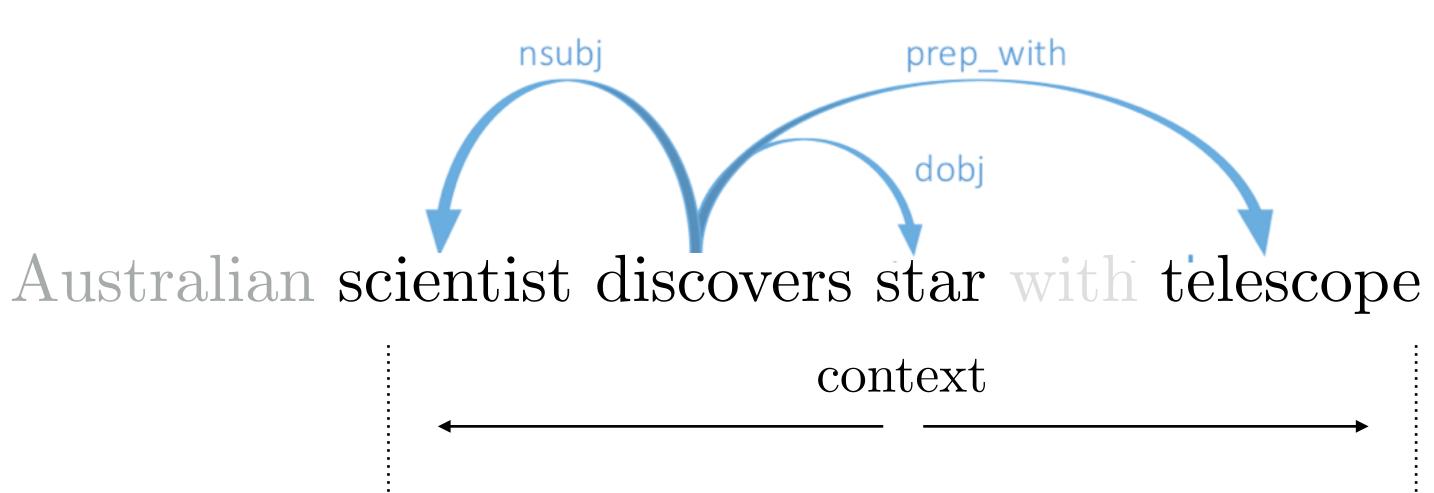
context +/-2 words















hogwarts

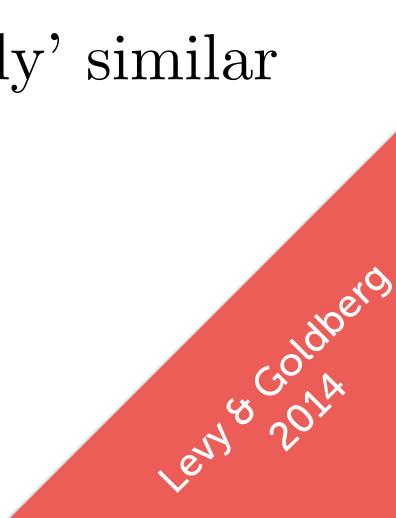
## BoW

dumbledore hallows half-blood malfoy snape

#### DEPS

sunnydale collinwood calarts greendale millfield

topically-similar 'functionally' similar VS





Intuition: positive associations (canada, snow) stronger in humans than negative associations (what is the opposite of Canada?)

Also show that SGNS is simply factorizing:

## w \* c = PMI(w, c) - log kThis is **completely** amazing!



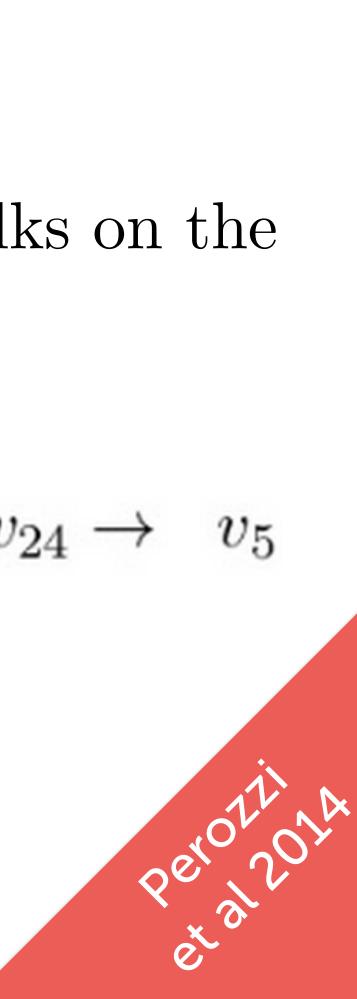
## word2vec

## learn word vectors from sentences

# deepwalk

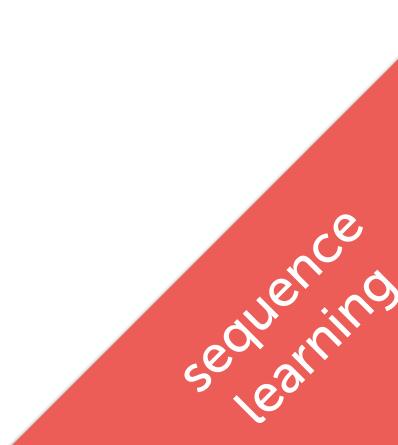
'words' are graph vertices'sentences' are random walks on the graph

 $v_{46} \rightarrow v_{45} \rightarrow v_{71} \rightarrow v_{24} \rightarrow v_5$ 



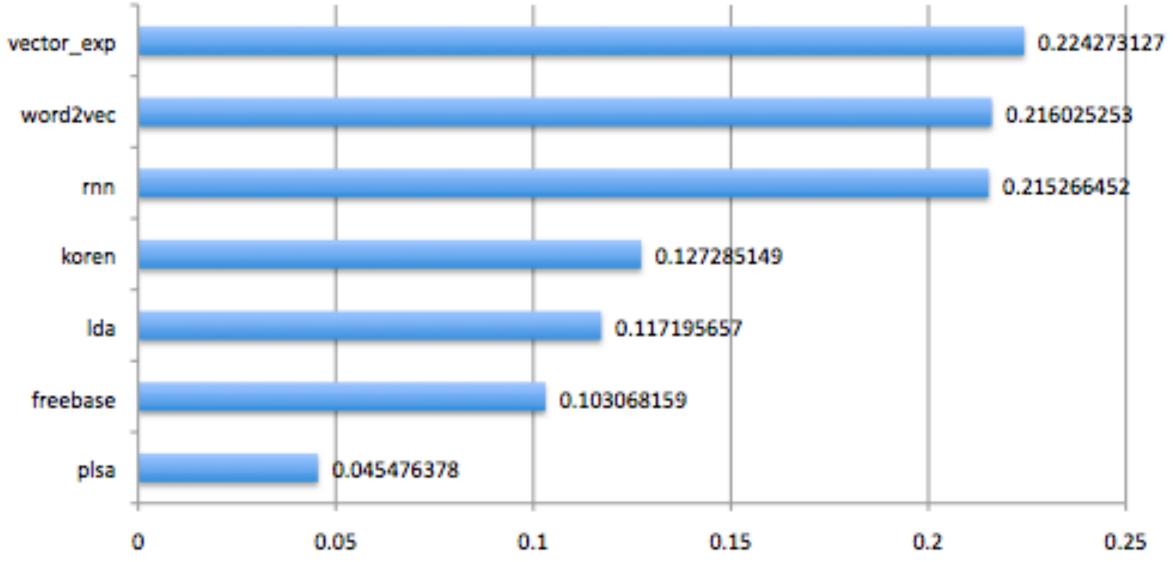
Playlists at Spotify

'words' are songs'sentences' are playlists



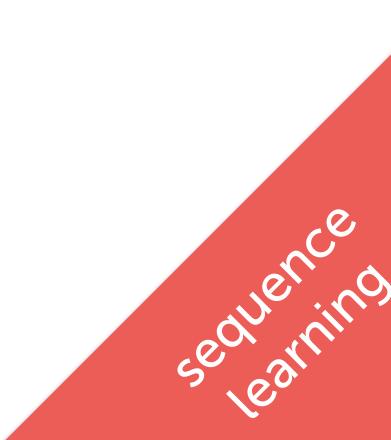
Playlists at Spotify

## Great performance on 'related artists'





Fixes at Stitch Fix Let's try: 'words' are styles 'sentences' are fixes

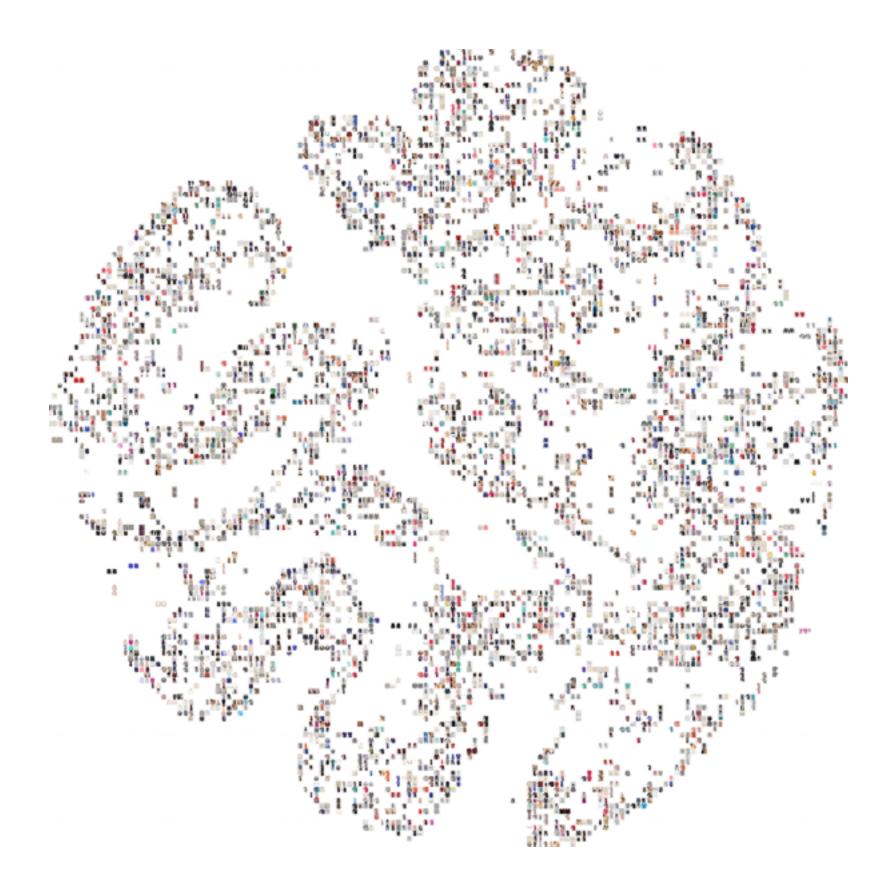


Fixes at Stitch Fix Learn similarity between styles because they co-occur

Learn 'coherent' styles



Fixes at Stitch Fix?

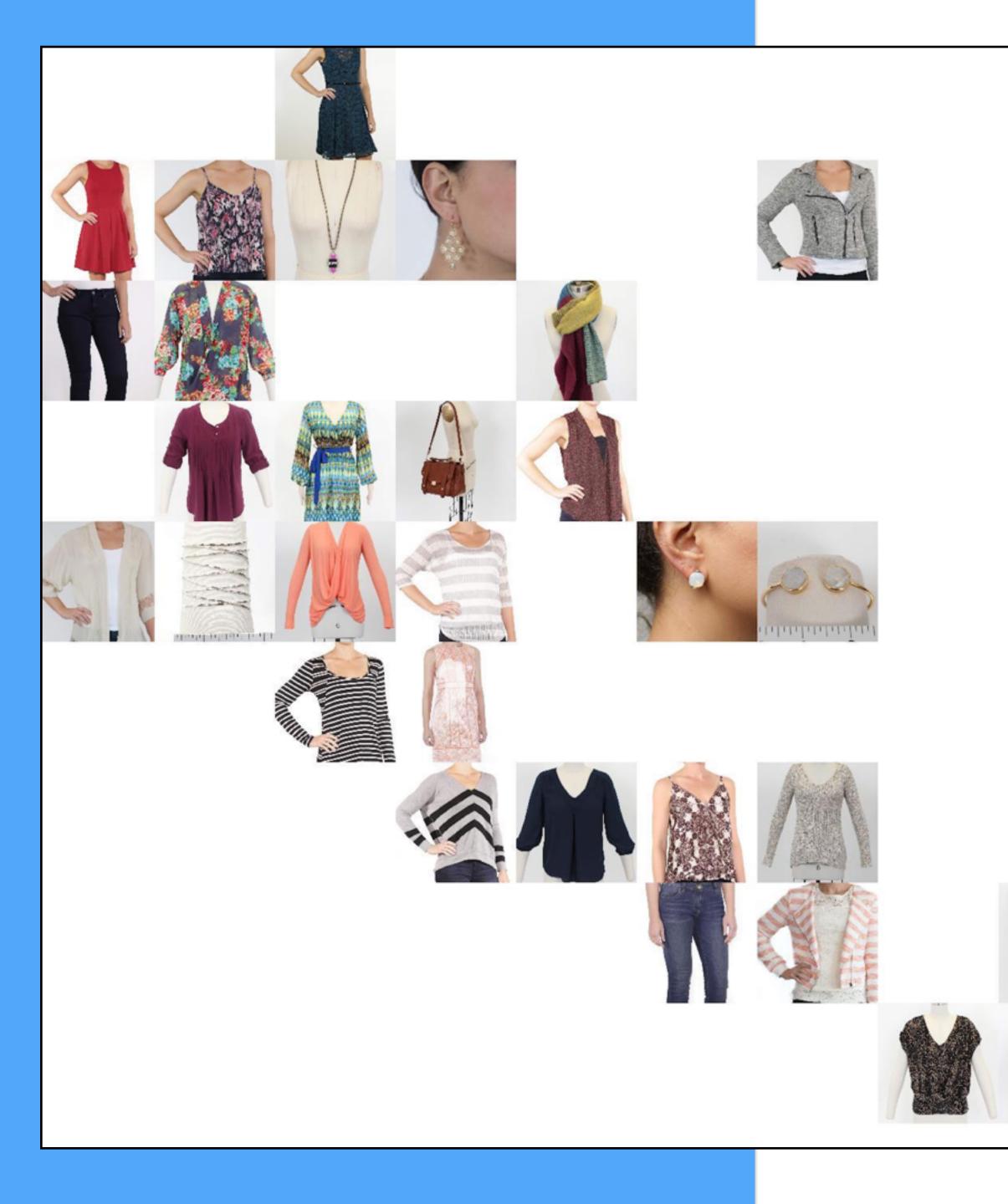


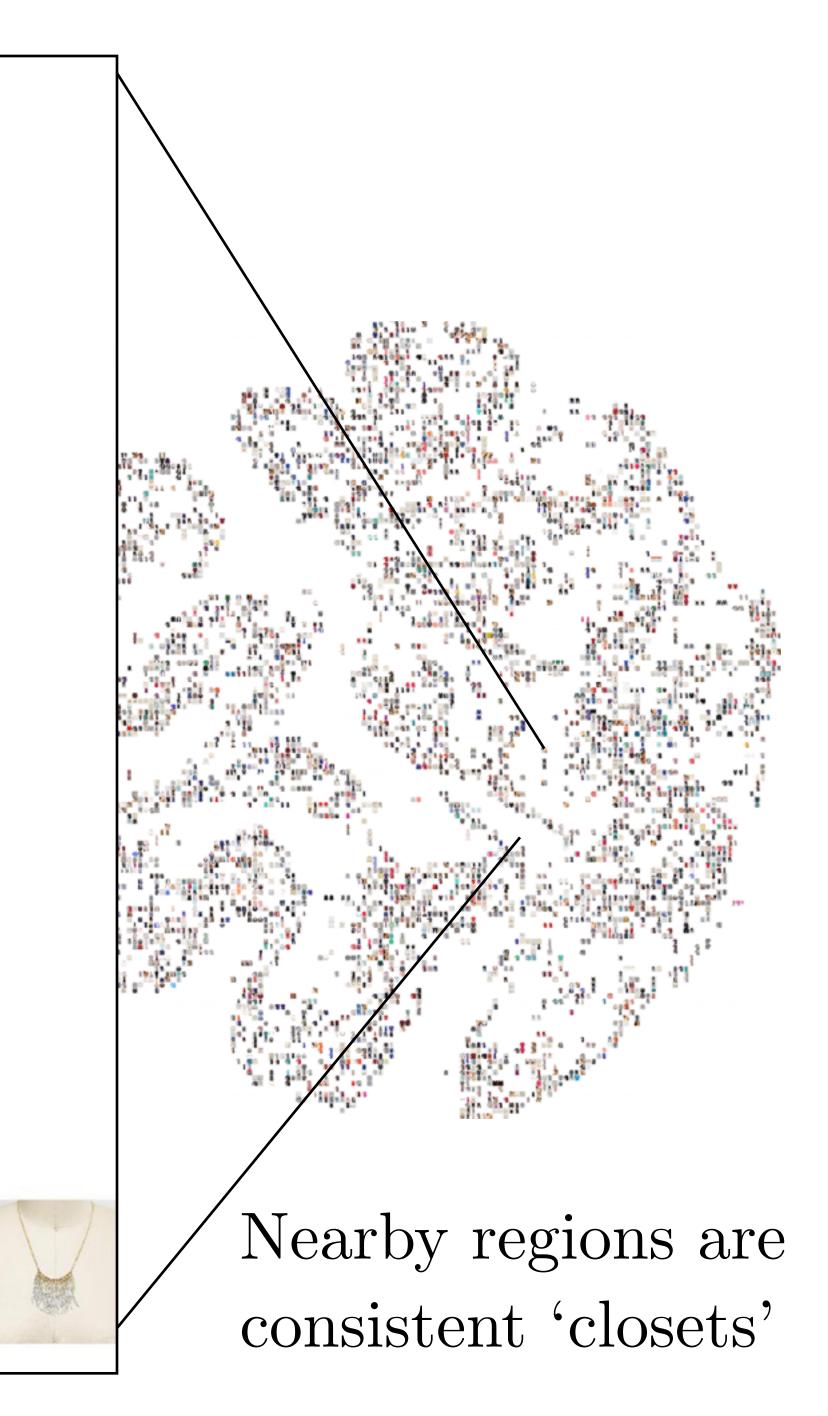
Got lots of structure!













Our text blob is a comment that comes from a region\_id and a style\_id

A specific Ida2vec model

$$L = \sigma(c * w$$

$$context = \vec{c_{ij}} = region_i + style_j$$

$$region_i = \Sigma_{k=0}^{n\_topics} u_{ik} \cdot \vec{m_k}$$

$$style_{j} = \Sigma_{l=0}^{n\_topics} u_{jl} \cdot \vec{n_{l}}$$

 $\vec{u} \sim dirichlet(\alpha)$ 

 $\vec{v} \sim dirichlet(\alpha)$ 

take\_rate\_in\_reg

 $(c * w) + \sigma(-c * w_{neg})$ 

$$_2)$$

$$gion \sim 5.0 * \sigma(W \cdot \vec{u})$$

#### The full likelihood model

$$L = \sigma(c * w) + \sigma(-c * w_{neg})$$

$$context = \vec{c_{ij}} = region_i + style_j$$

$$region_i = \sum_{k=0}^{n\_topics} u_{ik} \cdot \vec{m_k}$$

$$style_j = \sum_{l=0}^{n\_topics} u_{jl} \cdot \vec{n_l}$$

$$\vec{u} \sim dirichlet(\alpha_1)$$

$$\vec{v} \sim dirichlet(\alpha_2)$$

$$take\_rate\_in\_region \sim 5.0 * \sigma(W \cdot \vec{u})$$

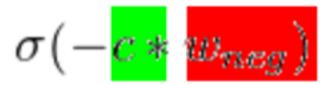
 $V \cdot \vec{u}$ Υ.

 $L = \sigma(\mathbf{c} \ast w) + \sigma(-\mathbf{c} \ast w_{meg})$ 

First part of the loss function is given context predict word.

**Don't** predict a negative word. These are words that are in our vocabulary somewhere, but not in our example.

We get negative samples **not** uniformly, but proportional to the word frequency<sup>3</sup>/<sub>4</sub> (yes, the <sup>3</sup>/<sub>4</sub> power is weird and ad hoc but totally works awesomely for word2vec)





$$L = \sigma(e * w) + \sigma(-e * w_{neg})$$

$$context = \vec{e_{ij}} = region_i + style_j$$

Context is made up from more than one part -- many 'contexts' available.

In this case, instead of one document, we can have many regions, or styles.

we can more than one term, we can have as many contexts as we like!

- In LDA, this context is a single term: the latent document vector that 'generates' words.
- In word2vec, this context is the 'pivot' word. Word2vec picks a random 'context' word in the corpus, centers a window around it, and tries to predict other words within that context.
- In both word2vec and LDA context is one term, either a document or a word. For Ida2vec,



$$L = \sigma(\mathbf{c} * \mathbf{w}) + \sigma(-\mathbf{c} * \mathbf{w}_{neg})$$

$$context = \vec{c_{ij}} = region_i + style_j$$

$$region_i = \Sigma_{k=0}^{n\_topics} u_{ik} \cdot \vec{m_k}$$

$$style_j = \Sigma_{l=0}^{n\_topics} u_{jl} \cdot \vec{n_l}$$

northeast, midwest for region or tops, bottoms, boho, romantic for style topics)

This forces the context vectors onto a limited set of basis vectors. Interpret this set, and you can generalize what each region vector and style vector means. For example, one topics vector might be close to the word vector for 'hand\_bag', 'purse', 'bag' indicating that that topic is a handbags topic. And then anything with big weight in that topic might be a handbag.

Each context (e.g., region or style) is decomposed into topics vectors and weights on those common topics vectors. One context has one shared set of topic vectors (think of these as cluster centroids) and every 'document' in that context (think of 1 of 50 states, 1 of 20k styles) has a weight/membership onto each of those topic vectors (think topics like



$$L = \sigma(\mathbf{c} * \mathbf{w}) + \sigma(-\mathbf{c} * \mathbf{w}_{neg})$$

$$context = \vec{c_{ij}} = region_i + style_j$$

$$region_i = \Sigma_{k=0}^{n\_topics} u_{ik} \cdot \vec{m_k}$$

$$style_j = \Sigma_{l=0}^{n\_topics} u_{jl} \cdot \vec{n_l}$$

$$\vec{u} \sim dirichlet(\alpha_1)$$

 $\vec{v} \sim dirichlet(\alpha_2)$ 

But the weights can still end up being very dense -- which meant everyone of my documents was a mixture of almost every component. This made it difficult to interpret what the document was, because it had membership in many groups.

So next we enforce a simplex with dirichlet & enforce sparsity with the concentration on the weights. The dirichlet is also nice but not critical, we could've had a non-negative decomposition or just stuck with all reals. But since Dirichlet components sum to 100%, it is easier to explain to analysts that a document is "10% of some\_topic + 90% some\_other\_topic" rather than saying "-2.3 \* some\_topic and +0.5 of some\_other\_topic".

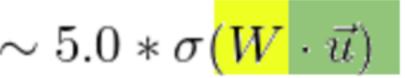


$$L = \sigma(\mathbf{e} * \mathbf{w}) + \sigma(\mathbf{e} * \mathbf{w}) +$$

Finally, we can make this 'supervised' by saying that the topic weights correlate through (matrix W) with some target outcome.











# topic 1 = "religion"

Trinitarian baptismal Pentecostals bede schismatics excommunication

 $v_{DOC} = 10\%$  religion + 89% politics +...

### Let's make $v_{DOC}$ into a mixture...

## topic 2 = "politics" Milosevic absentee Indonesia Lebanese Isrealis Karadzic

